ardupilot/libraries/AP_Motors/AP_MotorsHeli.cpp

549 lines
18 KiB
C++

/*
AP_MotorsHeli.cpp - ArduCopter motors library
Code by RandyMackay. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include "AP_MotorsHeli.h"
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = {
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: This is the angular location of swash servo #1.
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, servo1_pos),
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: This is the angular location of swash servo #2.
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, servo2_pos),
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: This is the angular location of swash servo #3.
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, servo3_pos),
// @Param: ROL_MAX
// @DisplayName: Maximum Roll Angle
// @Description: This is the maximum allowable aircraft roll angle in Stabilize Mode.
// @Range: 0 18000
// @Units: Degrees
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, roll_max),
// @Param: PIT_MAX
// @DisplayName: Maximum Pitch Angle
// @Description: This is the maximum allowable aircraft pitch angle in Stabilize Mode.
// @Range: 0 18000
// @Units: Degrees
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, pitch_max),
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
// @Description: This controls the lowest possible servo position for the swashplate.
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, collective_min),
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
// @Description: This controls the highest possible servo position for the swashplate.
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, collective_max),
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
// @Description: This is the swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades).
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, collective_mid),
// @Param: GYR_ENABLE
// @DisplayName: External Gyro Enabled
// @Description: Setting this to Enabled(1) will enable an external rudder gyro control. Setting this to Disabled(0) will disable the external gyro control and will revert to internal rudder control.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("GYR_ENABLE", 9, AP_MotorsHeli, ext_gyro_enabled),
// @Param: SWASH_TYPE
// @DisplayName: Swash Plate Type
// @Description: Setting this to 0 will configure for a 3-servo CCPM. Setting this to 1 will configure for mechanically mixed "H1".
// @User: Standard
AP_GROUPINFO("SWASH_TYPE", 10, AP_MotorsHeli, swash_type),
// @Param: GYR_GAIM
// @DisplayName: External Gyro Gain
// @Description: This is the PWM which is passed to the external gyro when external gyro is enabled.
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("GYR_GAIN", 11, AP_MotorsHeli, ext_gyro_gain),
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
// @Description: Setting this to Enabled(1) will pass radio inputs directly to servos. Setting this to Disabled(0) will enable Arducopter control of servos.
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, servo_manual),
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
// @Description: This corrects for phase angle errors of the helicopter main rotor head.
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, phase_angle),
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: This is a feed-forward compensation to automatically add rudder input when collective pitch is increased.
// @Range: 0 5
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, collective_yaw_effect),
// @Param: GOV_SETPOINT
// @DisplayName: External Motor Governor Setpoint
// @Description: This is the PWM which is passed to the external motor governor when external governor is enabled.
// @Range: 1000 2000
// @Units: PWM
// @Increment: 10
// @User: Standard
AP_GROUPINFO("GOV_SETPOINT", 15, AP_MotorsHeli, ext_gov_setpoint),
AP_GROUPEND
};
// init
void AP_MotorsHeli::Init()
{
// set update rate
set_update_rate(_speed_hz);
}
// set update rate to motors - a value in hertz or AP_MOTORS_SPEED_INSTANT_PWM for instant pwm
void AP_MotorsHeli::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
if( _speed_hz != AP_MOTORS_SPEED_INSTANT_PWM ) {
_rc->SetFastOutputChannels(_BV(_motor_to_channel_map[AP_MOTORS_MOT_1]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_2]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_3]) | _BV(_motor_to_channel_map[AP_MOTORS_MOT_4]), _speed_hz);
}
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsHeli::enable()
{
// enable output channels
_rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_1]); // swash servo 1
_rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_2]); // swash servo 2
_rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_3]); // swash servo 3
_rc->enable_out(_motor_to_channel_map[AP_MOTORS_MOT_4]); // yaw
_rc->enable_out(AP_MOTORS_HELI_EXT_GYRO); // for external gyro
_rc->enable_out(AP_MOTORS_HELI_EXT_ESC); // for external ESC
}
// output_min - sends minimum values out to the motors
void AP_MotorsHeli::output_min()
{
// move swash to mid
move_swash(0,0,500,0);
}
// output_armed - sends commands to the motors
void AP_MotorsHeli::output_armed()
{
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
if( servo_manual == 1 ) {
_rc_roll->servo_out = _rc_roll->control_in;
_rc_pitch->servo_out = _rc_pitch->control_in;
_rc_throttle->servo_out = _rc_throttle->control_in;
_rc_yaw->servo_out = _rc_yaw->control_in;
}
//static int counter = 0;
_rc_roll->calc_pwm();
_rc_pitch->calc_pwm();
_rc_throttle->calc_pwm();
_rc_yaw->calc_pwm();
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out );
ext_esc_control();
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_disarmed()
{
if(_rc_throttle->control_in > 0){
// we have pushed up the throttle
// remove safety
_auto_armed = true;
}
// for helis - armed or disarmed we allow servos to move
output_armed();
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli::output_test()
{
int16_t i;
// Send minimum values to all motors
output_min();
// servo 1
for( i=0; i<5; i++ ) {
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim - 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 0);
delay(300);
}
// servo 2
for( i=0; i<5; i++ ) {
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim - 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 0);
delay(300);
}
// servo 3
for( i=0; i<5; i++ ) {
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim - 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 0);
delay(300);
}
// external gyro
if( ext_gyro_enabled ) {
_rc->OutputCh(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
}
// servo 4
for( i=0; i<5; i++ ) {
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim - 100);
delay(300);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 0);
delay(300);
}
// Send minimum values to all motors
output_min();
}
// reset_swash - free up swash for maximum movements. Used for set-up
void AP_MotorsHeli::reset_swash()
{
// free up servo ranges
_servo_1->radio_min = 1000;
_servo_1->radio_max = 2000;
_servo_2->radio_min = 1000;
_servo_2->radio_max = 2000;
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform servo control mixing
// roll factors
_rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle));
_rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle));
_rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle));
// pitch factors
_pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle));
_pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle));
_pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}else{ //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
// set roll, pitch and throttle scaling
_roll_scaler = 1.0;
_pitch_scaler = 1.0;
_collective_scalar = ((float)(_rc_throttle->radio_max - _rc_throttle->radio_min))/1000.0;
// we must be in set-up mode so mark swash as uninitialised
_swash_initialised = false;
}
// init_swash - initialise the swash plate
void AP_MotorsHeli::init_swash()
{
// swash servo initialisation
_servo_1->set_range(0,1000);
_servo_2->set_range(0,1000);
_servo_3->set_range(0,1000);
_servo_4->set_angle(4500);
// ensure _coll values are reasonable
if( collective_min >= collective_max ) {
collective_min = 1000;
collective_max = 2000;
}
collective_mid = constrain(collective_mid, collective_min, collective_max);
// calculate throttle mid point
throttle_mid = ((float)(collective_mid-collective_min))/((float)(collective_max-collective_min))*1000.0;
// determine roll, pitch and throttle scaling
_roll_scaler = (float)roll_max/4500.0;
_pitch_scaler = (float)pitch_max/4500.0;
_collective_scalar = ((float)(collective_max-collective_min))/1000.0;
if( swash_type == AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing
// roll factors
_rollFactor[CH_1] = cos(radians(servo1_pos + 90 - phase_angle));
_rollFactor[CH_2] = cos(radians(servo2_pos + 90 - phase_angle));
_rollFactor[CH_3] = cos(radians(servo3_pos + 90 - phase_angle));
// pitch factors
_pitchFactor[CH_1] = cos(radians(servo1_pos - phase_angle));
_pitchFactor[CH_2] = cos(radians(servo2_pos - phase_angle));
_pitchFactor[CH_3] = cos(radians(servo3_pos - phase_angle));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}else{ //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
// servo min/max values
_servo_1->radio_min = 1000;
_servo_1->radio_max = 2000;
_servo_2->radio_min = 1000;
_servo_2->radio_max = 2000;
_servo_3->radio_min = 1000;
_servo_3->radio_max = 2000;
// mark swash as initialised
_swash_initialised = true;
}
//
// heli_move_swash - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -4500 ~ 4500
// pitch: -4500 ~ 4500
// collective: 0 ~ 1000
// yaw: -4500 ~ 4500
//
void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_out, int16_t yaw_out)
{
int16_t yaw_offset = 0;
int16_t coll_out_scaled;
if( servo_manual == 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
// check if we need to free up the swash
if( _swash_initialised ) {
reset_swash();
}
coll_out_scaled = coll_out * _collective_scalar + _rc_throttle->radio_min - 1000;
}else{ // regular flight mode
// check if we need to reinitialise the swash
if( !_swash_initialised ) {
init_swash();
}
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified roll_max and pitch_max
// coming into this equation at 4500 or less, and based on the original assumption of the
// total _servo_x.servo_out range being -4500 to 4500.
roll_out = roll_out * _roll_scaler;
roll_out = constrain(roll_out, (int16_t)-roll_max, (int16_t)roll_max);
pitch_out = pitch_out * _pitch_scaler;
pitch_out = constrain(pitch_out, (int16_t)-pitch_max, (int16_t)pitch_max);
// scale collective pitch
coll_out = constrain(coll_out, 0, 1000);
coll_out_scaled = coll_out * _collective_scalar + collective_min - 1000;
// rudder feed forward based on collective
if( !ext_gyro_enabled ) {
yaw_offset = collective_yaw_effect * abs(coll_out_scaled - throttle_mid);
}
}
// swashplate servos
_servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500);
_servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500);
if( swash_type == AP_MOTORS_HELI_SWASH_H1 ) {
_servo_1->servo_out += 500;
_servo_2->servo_out += 500;
}
_servo_3->servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3->radio_trim-1500);
_servo_4->servo_out = yaw_out + yaw_offset;
// use servo_out to calculate pwm_out and radio_out
_servo_1->calc_pwm();
_servo_2->calc_pwm();
_servo_3->calc_pwm();
_servo_4->calc_pwm();
// actually move the servos
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_out);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_out);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_out);
_rc->OutputCh(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_out);
// to be compatible with other frame types
motor_out[AP_MOTORS_MOT_1] = _servo_1->radio_out;
motor_out[AP_MOTORS_MOT_2] = _servo_2->radio_out;
motor_out[AP_MOTORS_MOT_3] = _servo_3->radio_out;
motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out;
// output gyro value
if( ext_gyro_enabled ) {
_rc->OutputCh(AP_MOTORS_HELI_EXT_GYRO, ext_gyro_gain);
}
// InstantPWM
if( _speed_hz == AP_MOTORS_SPEED_INSTANT_PWM ) {
_rc->Force_Out0_Out1();
_rc->Force_Out2_Out3();
}
}
void AP_MotorsHeli::ext_esc_control()
{
switch ( AP_MOTORS_ESC_MODE_PASSTHROUGH ) {
case AP_MOTORS_ESC_MODE_PASSTHROUGH:
if( armed() && _rc_8->control_in > 10 ){
if (ext_esc_ramp < AP_MOTORS_EXT_ESC_RAMP_UP){
ext_esc_ramp++;
ext_esc_output = map(ext_esc_ramp, 0, AP_MOTORS_EXT_ESC_RAMP_UP, 1000, _rc_8->control_in);
} else {
ext_esc_output = _rc_8->control_in;
}
} else if( !armed() ) {
_rc->OutputCh(AP_MOTORS_HELI_EXT_ESC, _rc_8->radio_min);
ext_esc_ramp = 0; //Return ESC Ramp to 0
}
break;
case AP_MOTORS_ESC_MODE_EXT_GOV:
if( armed() && _rc_throttle->control_in > 10){
if (ext_esc_ramp < AP_MOTORS_EXT_ESC_RAMP_UP){
ext_esc_ramp++;
ext_esc_output = map(ext_esc_ramp, 0, AP_MOTORS_EXT_ESC_RAMP_UP, 1000, ext_gov_setpoint);
} else {
ext_esc_output = ext_gov_setpoint;
}
} else {
ext_esc_ramp = 0; //Return ESC Ramp to 0
ext_esc_output = 1000; //Just to be sure ESC output is 0
}
_rc->OutputCh(AP_MOTORS_HELI_EXT_ESC, ext_esc_output);
break;
// case 3: // Open Loop ESC Control
//
// coll_scaled = _motors->coll_out_scaled + 1000;
// if(coll_scaled <= _motors->collective_mid){
// esc_ol_output = map(coll_scaled, _motors->collective_min, _motors->collective_mid, esc_out_low, esc_out_mid); // Bottom half of V-curve
// } else if (coll_scaled > _motors->collective_mid){
// esc_ol_output = map(coll_scaled, _motors->collective_mid, _motors->collective_max, esc_out_mid, esc_out_high); // Top half of V-curve
// } else { esc_ol_output = 1000; } // Just in case.
//
// if(_motors->armed() && _rc_throttle->control_in > 10){
// if (ext_esc_ramp < ext_esc_ramp_up){
// ext_esc_ramp++;
// ext_esc_output = map(ext_esc_ramp, 0, ext_esc_ramp_up, 1000, esc_ol_output);
// } else {
// ext_esc_output = esc_ol_output;
// }
// } else {
// ext_esc_ramp = 0; //Return ESC Ramp to 0
// ext_esc_output = 1000; //Just to be sure ESC output is 0
//}
// _rc->OutputCh(AP_MOTORS_HELI_EXT_ESC, ext_esc_output);
// break;
default:
break;
}
};