2012-04-02 05:26:37 -03:00
/*
AP_MotorsHeli . cpp - ArduCopter motors library
Code by RandyMackay . DIYDrones . com
This library is free software ; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation ; either
version 2.1 of the License , or ( at your option ) any later version .
*/
# include "AP_MotorsHeli.h"
const AP_Param : : GroupInfo AP_MotorsHeli : : var_info [ ] PROGMEM = {
2012-05-30 22:50:25 -03:00
2012-04-26 20:26:14 -03:00
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: This is the angular location of swash servo #1.
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " SV1_POS " , 1 , AP_MotorsHeli , servo1_pos ) ,
2012-04-26 20:26:14 -03:00
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: This is the angular location of swash servo #2.
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " SV2_POS " , 2 , AP_MotorsHeli , servo2_pos ) ,
2012-04-26 20:26:14 -03:00
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: This is the angular location of swash servo #3.
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " SV3_POS " , 3 , AP_MotorsHeli , servo3_pos ) ,
2012-04-26 20:26:14 -03:00
// @Param: ROL_MAX
// @DisplayName: Maximum Roll Angle
// @Description: This is the maximum allowable aircraft roll angle in Stabilize Mode.
// @Range: 0 18000
// @Units: Degrees
// @Increment: 1
// @User: Advanced
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " ROL_MAX " , 4 , AP_MotorsHeli , roll_max ) ,
2012-04-26 20:26:14 -03:00
// @Param: PIT_MAX
// @DisplayName: Maximum Pitch Angle
// @Description: This is the maximum allowable aircraft pitch angle in Stabilize Mode.
// @Range: 0 18000
// @Units: Degrees
// @Increment: 1
// @User: Advanced
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " PIT_MAX " , 5 , AP_MotorsHeli , pitch_max ) ,
2012-04-26 20:26:14 -03:00
// @Param: COL_MIN
// @DisplayName: Collective Pitch Minimum
// @Description: This controls the lowest possible servo position for the swashplate.
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " COL_MIN " , 6 , AP_MotorsHeli , collective_min ) ,
2012-04-26 20:26:14 -03:00
// @Param: COL_MAX
// @DisplayName: Collective Pitch Maximum
// @Description: This controls the highest possible servo position for the swashplate.
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " COL_MAX " , 7 , AP_MotorsHeli , collective_max ) ,
2012-04-26 20:26:14 -03:00
// @Param: COL_MID
// @DisplayName: Collective Pitch Mid-Point
// @Description: This is the swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades).
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " COL_MID " , 8 , AP_MotorsHeli , collective_mid ) ,
2012-04-26 20:26:14 -03:00
// @Param: GYR_ENABLE
// @DisplayName: External Gyro Enabled
2012-04-28 22:50:41 -03:00
// @Description: Setting this to Enabled(1) will enable an external rudder gyro control. Setting this to Disabled(0) will disable the external gyro control and will revert to internal rudder control.
// @Values: 0:Disabled,1:Enabled
2012-04-26 20:26:14 -03:00
// @User: Standard
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " GYR_ENABLE " , 9 , AP_MotorsHeli , ext_gyro_enabled ) ,
2012-04-26 20:26:14 -03:00
// @Param: SWASH_TYPE
// @DisplayName: Swash Plate Type
// @Description: Setting this to 0 will configure for a 3-servo CCPM. Setting this to 1 will configure for mechanically mixed "H1".
// @User: Standard
2012-05-30 22:50:25 -03:00
AP_GROUPINFO ( " SWASH_TYPE " , 10 , AP_MotorsHeli , swash_type ) ,
2012-04-26 20:26:14 -03:00
// @Param: GYR_GAIM
// @DisplayName: External Gyro Gain
// @Description: This is the PWM which is passed to the external gyro when external gyro is enabled.
// @Range: 1000 2000
// @Units: PWM
// @Increment: 1
// @User: Standard
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " GYR_GAIN " , 11 , AP_MotorsHeli , ext_gyro_gain ) ,
2012-04-26 20:26:14 -03:00
// @Param: SV_MAN
// @DisplayName: Manual Servo Mode
2012-04-28 22:50:41 -03:00
// @Description: Setting this to Enabled(1) will pass radio inputs directly to servos. Setting this to Disabled(0) will enable Arducopter control of servos.
// @Values: 0:Disabled,1:Enabled
2012-04-26 20:26:14 -03:00
// @User: Standard
2012-04-02 05:26:37 -03:00
AP_GROUPINFO ( " SV_MAN " , 12 , AP_MotorsHeli , servo_manual ) ,
2012-04-26 20:26:14 -03:00
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
// @Description: This corrects for phase angle errors of the helicopter main rotor head.
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
2012-05-30 22:50:25 -03:00
AP_GROUPINFO ( " PHANG " , 13 , AP_MotorsHeli , phase_angle ) ,
2012-04-26 20:26:14 -03:00
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: This is a feed-forward compensation to automatically add rudder input when collective pitch is increased.
// @Range: 0 5
2012-05-30 22:50:25 -03:00
AP_GROUPINFO ( " COLYAW " , 14 , AP_MotorsHeli , collective_yaw_effect ) ,
// @Param: GOV_SETPOINT
// @DisplayName: External Motor Governor Setpoint
// @Description: This is the PWM which is passed to the external motor governor when external governor is enabled.
// @Range: 1000 2000
// @Units: PWM
// @Increment: 10
// @User: Standard
AP_GROUPINFO ( " GOV_SETPOINT " , 15 , AP_MotorsHeli , ext_gov_setpoint ) ,
2012-04-02 05:26:37 -03:00
AP_GROUPEND
} ;
// init
void AP_MotorsHeli : : Init ( )
{
// set update rate
set_update_rate ( _speed_hz ) ;
}
// set update rate to motors - a value in hertz or AP_MOTORS_SPEED_INSTANT_PWM for instant pwm
void AP_MotorsHeli : : set_update_rate ( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz ;
// setup fast channels
if ( _speed_hz ! = AP_MOTORS_SPEED_INSTANT_PWM ) {
_rc - > SetFastOutputChannels ( _BV ( _motor_to_channel_map [ AP_MOTORS_MOT_1 ] ) | _BV ( _motor_to_channel_map [ AP_MOTORS_MOT_2 ] ) | _BV ( _motor_to_channel_map [ AP_MOTORS_MOT_3 ] ) | _BV ( _motor_to_channel_map [ AP_MOTORS_MOT_4 ] ) , _speed_hz ) ;
}
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsHeli : : enable ( )
{
// enable output channels
_rc - > enable_out ( _motor_to_channel_map [ AP_MOTORS_MOT_1 ] ) ; // swash servo 1
_rc - > enable_out ( _motor_to_channel_map [ AP_MOTORS_MOT_2 ] ) ; // swash servo 2
_rc - > enable_out ( _motor_to_channel_map [ AP_MOTORS_MOT_3 ] ) ; // swash servo 3
_rc - > enable_out ( _motor_to_channel_map [ AP_MOTORS_MOT_4 ] ) ; // yaw
_rc - > enable_out ( AP_MOTORS_HELI_EXT_GYRO ) ; // for external gyro
2012-05-30 22:50:25 -03:00
_rc - > enable_out ( AP_MOTORS_HELI_EXT_ESC ) ; // for external ESC
2012-04-02 05:26:37 -03:00
}
// output_min - sends minimum values out to the motors
void AP_MotorsHeli : : output_min ( )
{
// move swash to mid
move_swash ( 0 , 0 , 500 , 0 ) ;
}
// output_armed - sends commands to the motors
void AP_MotorsHeli : : output_armed ( )
{
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash
if ( servo_manual = = 1 ) {
_rc_roll - > servo_out = _rc_roll - > control_in ;
_rc_pitch - > servo_out = _rc_pitch - > control_in ;
_rc_throttle - > servo_out = _rc_throttle - > control_in ;
_rc_yaw - > servo_out = _rc_yaw - > control_in ;
}
//static int counter = 0;
_rc_roll - > calc_pwm ( ) ;
_rc_pitch - > calc_pwm ( ) ;
_rc_throttle - > calc_pwm ( ) ;
_rc_yaw - > calc_pwm ( ) ;
move_swash ( _rc_roll - > servo_out , _rc_pitch - > servo_out , _rc_throttle - > servo_out , _rc_yaw - > servo_out ) ;
2012-05-30 22:50:25 -03:00
ext_esc_control ( ) ;
2012-04-02 05:26:37 -03:00
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli : : output_disarmed ( )
{
if ( _rc_throttle - > control_in > 0 ) {
// we have pushed up the throttle
// remove safety
_auto_armed = true ;
}
// for helis - armed or disarmed we allow servos to move
output_armed ( ) ;
}
// output_disarmed - sends commands to the motors
void AP_MotorsHeli : : output_test ( )
{
int16_t i ;
// Send minimum values to all motors
output_min ( ) ;
// servo 1
for ( i = 0 ; i < 5 ; i + + ) {
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_1 ] , _servo_1 - > radio_trim + 100 ) ;
delay ( 300 ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_1 ] , _servo_1 - > radio_trim - 100 ) ;
delay ( 300 ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_1 ] , _servo_1 - > radio_trim + 0 ) ;
delay ( 300 ) ;
}
// servo 2
for ( i = 0 ; i < 5 ; i + + ) {
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_2 ] , _servo_2 - > radio_trim + 100 ) ;
delay ( 300 ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_2 ] , _servo_2 - > radio_trim - 100 ) ;
delay ( 300 ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_2 ] , _servo_2 - > radio_trim + 0 ) ;
delay ( 300 ) ;
}
// servo 3
for ( i = 0 ; i < 5 ; i + + ) {
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_3 ] , _servo_3 - > radio_trim + 100 ) ;
delay ( 300 ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_3 ] , _servo_3 - > radio_trim - 100 ) ;
delay ( 300 ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_3 ] , _servo_3 - > radio_trim + 0 ) ;
delay ( 300 ) ;
}
// external gyro
if ( ext_gyro_enabled ) {
_rc - > OutputCh ( AP_MOTORS_HELI_EXT_GYRO , ext_gyro_gain ) ;
}
// servo 4
for ( i = 0 ; i < 5 ; i + + ) {
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_4 ] , _servo_4 - > radio_trim + 100 ) ;
delay ( 300 ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_4 ] , _servo_4 - > radio_trim - 100 ) ;
delay ( 300 ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_4 ] , _servo_4 - > radio_trim + 0 ) ;
delay ( 300 ) ;
}
// Send minimum values to all motors
output_min ( ) ;
}
// reset_swash - free up swash for maximum movements. Used for set-up
void AP_MotorsHeli : : reset_swash ( )
{
// free up servo ranges
_servo_1 - > radio_min = 1000 ;
_servo_1 - > radio_max = 2000 ;
_servo_2 - > radio_min = 1000 ;
_servo_2 - > radio_max = 2000 ;
_servo_3 - > radio_min = 1000 ;
_servo_3 - > radio_max = 2000 ;
if ( swash_type = = AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform servo control mixing
// roll factors
_rollFactor [ CH_1 ] = cos ( radians ( servo1_pos + 90 - phase_angle ) ) ;
_rollFactor [ CH_2 ] = cos ( radians ( servo2_pos + 90 - phase_angle ) ) ;
_rollFactor [ CH_3 ] = cos ( radians ( servo3_pos + 90 - phase_angle ) ) ;
// pitch factors
_pitchFactor [ CH_1 ] = cos ( radians ( servo1_pos - phase_angle ) ) ;
_pitchFactor [ CH_2 ] = cos ( radians ( servo2_pos - phase_angle ) ) ;
_pitchFactor [ CH_3 ] = cos ( radians ( servo3_pos - phase_angle ) ) ;
// collective factors
_collectiveFactor [ CH_1 ] = 1 ;
_collectiveFactor [ CH_2 ] = 1 ;
_collectiveFactor [ CH_3 ] = 1 ;
} else { //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor [ CH_1 ] = 1 ;
_rollFactor [ CH_2 ] = 0 ;
_rollFactor [ CH_3 ] = 0 ;
// pitch factors
_pitchFactor [ CH_1 ] = 0 ;
_pitchFactor [ CH_2 ] = 1 ;
_pitchFactor [ CH_3 ] = 0 ;
// collective factors
_collectiveFactor [ CH_1 ] = 0 ;
_collectiveFactor [ CH_2 ] = 0 ;
_collectiveFactor [ CH_3 ] = 1 ;
}
// set roll, pitch and throttle scaling
_roll_scaler = 1.0 ;
_pitch_scaler = 1.0 ;
_collective_scalar = ( ( float ) ( _rc_throttle - > radio_max - _rc_throttle - > radio_min ) ) / 1000.0 ;
// we must be in set-up mode so mark swash as uninitialised
_swash_initialised = false ;
}
// init_swash - initialise the swash plate
void AP_MotorsHeli : : init_swash ( )
{
// swash servo initialisation
_servo_1 - > set_range ( 0 , 1000 ) ;
_servo_2 - > set_range ( 0 , 1000 ) ;
_servo_3 - > set_range ( 0 , 1000 ) ;
_servo_4 - > set_angle ( 4500 ) ;
// ensure _coll values are reasonable
if ( collective_min > = collective_max ) {
collective_min = 1000 ;
collective_max = 2000 ;
}
collective_mid = constrain ( collective_mid , collective_min , collective_max ) ;
// calculate throttle mid point
throttle_mid = ( ( float ) ( collective_mid - collective_min ) ) / ( ( float ) ( collective_max - collective_min ) ) * 1000.0 ;
// determine roll, pitch and throttle scaling
_roll_scaler = ( float ) roll_max / 4500.0 ;
_pitch_scaler = ( float ) pitch_max / 4500.0 ;
_collective_scalar = ( ( float ) ( collective_max - collective_min ) ) / 1000.0 ;
if ( swash_type = = AP_MOTORS_HELI_SWASH_CCPM ) { //CCPM Swashplate, perform control mixing
// roll factors
_rollFactor [ CH_1 ] = cos ( radians ( servo1_pos + 90 - phase_angle ) ) ;
_rollFactor [ CH_2 ] = cos ( radians ( servo2_pos + 90 - phase_angle ) ) ;
_rollFactor [ CH_3 ] = cos ( radians ( servo3_pos + 90 - phase_angle ) ) ;
// pitch factors
_pitchFactor [ CH_1 ] = cos ( radians ( servo1_pos - phase_angle ) ) ;
_pitchFactor [ CH_2 ] = cos ( radians ( servo2_pos - phase_angle ) ) ;
_pitchFactor [ CH_3 ] = cos ( radians ( servo3_pos - phase_angle ) ) ;
// collective factors
_collectiveFactor [ CH_1 ] = 1 ;
_collectiveFactor [ CH_2 ] = 1 ;
_collectiveFactor [ CH_3 ] = 1 ;
} else { //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor [ CH_1 ] = 1 ;
_rollFactor [ CH_2 ] = 0 ;
_rollFactor [ CH_3 ] = 0 ;
// pitch factors
_pitchFactor [ CH_1 ] = 0 ;
_pitchFactor [ CH_2 ] = 1 ;
_pitchFactor [ CH_3 ] = 0 ;
// collective factors
_collectiveFactor [ CH_1 ] = 0 ;
_collectiveFactor [ CH_2 ] = 0 ;
_collectiveFactor [ CH_3 ] = 1 ;
}
// servo min/max values
_servo_1 - > radio_min = 1000 ;
_servo_1 - > radio_max = 2000 ;
_servo_2 - > radio_min = 1000 ;
_servo_2 - > radio_max = 2000 ;
_servo_3 - > radio_min = 1000 ;
_servo_3 - > radio_max = 2000 ;
// mark swash as initialised
_swash_initialised = true ;
}
//
// heli_move_swash - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -4500 ~ 4500
// pitch: -4500 ~ 4500
// collective: 0 ~ 1000
// yaw: -4500 ~ 4500
//
void AP_MotorsHeli : : move_swash ( int16_t roll_out , int16_t pitch_out , int16_t coll_out , int16_t yaw_out )
{
int16_t yaw_offset = 0 ;
int16_t coll_out_scaled ;
if ( servo_manual = = 1 ) { // are we in manual servo mode? (i.e. swash set-up mode)?
// check if we need to free up the swash
if ( _swash_initialised ) {
reset_swash ( ) ;
}
coll_out_scaled = coll_out * _collective_scalar + _rc_throttle - > radio_min - 1000 ;
} else { // regular flight mode
// check if we need to reinitialise the swash
if ( ! _swash_initialised ) {
init_swash ( ) ;
}
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified roll_max and pitch_max
// coming into this equation at 4500 or less, and based on the original assumption of the
// total _servo_x.servo_out range being -4500 to 4500.
roll_out = roll_out * _roll_scaler ;
roll_out = constrain ( roll_out , ( int16_t ) - roll_max , ( int16_t ) roll_max ) ;
pitch_out = pitch_out * _pitch_scaler ;
pitch_out = constrain ( pitch_out , ( int16_t ) - pitch_max , ( int16_t ) pitch_max ) ;
// scale collective pitch
coll_out = constrain ( coll_out , 0 , 1000 ) ;
coll_out_scaled = coll_out * _collective_scalar + collective_min - 1000 ;
// rudder feed forward based on collective
if ( ! ext_gyro_enabled ) {
2012-05-25 16:25:21 -03:00
yaw_offset = collective_yaw_effect * abs ( coll_out_scaled - throttle_mid ) ;
2012-04-02 05:26:37 -03:00
}
}
// swashplate servos
_servo_1 - > servo_out = ( _rollFactor [ CH_1 ] * roll_out + _pitchFactor [ CH_1 ] * pitch_out ) / 10 + _collectiveFactor [ CH_1 ] * coll_out_scaled + ( _servo_1 - > radio_trim - 1500 ) ;
_servo_2 - > servo_out = ( _rollFactor [ CH_2 ] * roll_out + _pitchFactor [ CH_2 ] * pitch_out ) / 10 + _collectiveFactor [ CH_2 ] * coll_out_scaled + ( _servo_2 - > radio_trim - 1500 ) ;
if ( swash_type = = AP_MOTORS_HELI_SWASH_H1 ) {
_servo_1 - > servo_out + = 500 ;
_servo_2 - > servo_out + = 500 ;
}
_servo_3 - > servo_out = ( _rollFactor [ CH_3 ] * roll_out + _pitchFactor [ CH_3 ] * pitch_out ) / 10 + _collectiveFactor [ CH_3 ] * coll_out_scaled + ( _servo_3 - > radio_trim - 1500 ) ;
_servo_4 - > servo_out = yaw_out + yaw_offset ;
// use servo_out to calculate pwm_out and radio_out
_servo_1 - > calc_pwm ( ) ;
_servo_2 - > calc_pwm ( ) ;
_servo_3 - > calc_pwm ( ) ;
_servo_4 - > calc_pwm ( ) ;
// actually move the servos
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_1 ] , _servo_1 - > radio_out ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_2 ] , _servo_2 - > radio_out ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_3 ] , _servo_3 - > radio_out ) ;
_rc - > OutputCh ( _motor_to_channel_map [ AP_MOTORS_MOT_4 ] , _servo_4 - > radio_out ) ;
// to be compatible with other frame types
motor_out [ AP_MOTORS_MOT_1 ] = _servo_1 - > radio_out ;
motor_out [ AP_MOTORS_MOT_2 ] = _servo_2 - > radio_out ;
motor_out [ AP_MOTORS_MOT_3 ] = _servo_3 - > radio_out ;
motor_out [ AP_MOTORS_MOT_4 ] = _servo_4 - > radio_out ;
// output gyro value
if ( ext_gyro_enabled ) {
_rc - > OutputCh ( AP_MOTORS_HELI_EXT_GYRO , ext_gyro_gain ) ;
}
// InstantPWM
if ( _speed_hz = = AP_MOTORS_SPEED_INSTANT_PWM ) {
_rc - > Force_Out0_Out1 ( ) ;
_rc - > Force_Out2_Out3 ( ) ;
}
2012-05-30 22:50:25 -03:00
}
void AP_MotorsHeli : : ext_esc_control ( )
{
switch ( AP_MOTORS_ESC_MODE_PASSTHROUGH ) {
case AP_MOTORS_ESC_MODE_PASSTHROUGH :
2012-06-07 23:55:47 -03:00
if ( armed ( ) & & _rc_8 - > control_in > 10 ) {
if ( ext_esc_ramp < AP_MOTORS_EXT_ESC_RAMP_UP ) {
ext_esc_ramp + + ;
ext_esc_output = map ( ext_esc_ramp , 0 , AP_MOTORS_EXT_ESC_RAMP_UP , 1000 , _rc_8 - > control_in ) ;
} else {
ext_esc_output = _rc_8 - > control_in ;
}
} else if ( ! armed ( ) ) {
2012-05-30 22:50:25 -03:00
_rc - > OutputCh ( AP_MOTORS_HELI_EXT_ESC , _rc_8 - > radio_min ) ;
2012-06-07 23:55:47 -03:00
ext_esc_ramp = 0 ; //Return ESC Ramp to 0
2012-05-30 22:50:25 -03:00
}
break ;
case AP_MOTORS_ESC_MODE_EXT_GOV :
if ( armed ( ) & & _rc_throttle - > control_in > 10 ) {
if ( ext_esc_ramp < AP_MOTORS_EXT_ESC_RAMP_UP ) {
ext_esc_ramp + + ;
ext_esc_output = map ( ext_esc_ramp , 0 , AP_MOTORS_EXT_ESC_RAMP_UP , 1000 , ext_gov_setpoint ) ;
} else {
ext_esc_output = ext_gov_setpoint ;
}
} else {
ext_esc_ramp = 0 ; //Return ESC Ramp to 0
ext_esc_output = 1000 ; //Just to be sure ESC output is 0
}
_rc - > OutputCh ( AP_MOTORS_HELI_EXT_ESC , ext_esc_output ) ;
break ;
// case 3: // Open Loop ESC Control
//
// coll_scaled = _motors->coll_out_scaled + 1000;
// if(coll_scaled <= _motors->collective_mid){
// esc_ol_output = map(coll_scaled, _motors->collective_min, _motors->collective_mid, esc_out_low, esc_out_mid); // Bottom half of V-curve
// } else if (coll_scaled > _motors->collective_mid){
// esc_ol_output = map(coll_scaled, _motors->collective_mid, _motors->collective_max, esc_out_mid, esc_out_high); // Top half of V-curve
// } else { esc_ol_output = 1000; } // Just in case.
//
// if(_motors->armed() && _rc_throttle->control_in > 10){
// if (ext_esc_ramp < ext_esc_ramp_up){
// ext_esc_ramp++;
// ext_esc_output = map(ext_esc_ramp, 0, ext_esc_ramp_up, 1000, esc_ol_output);
// } else {
// ext_esc_output = esc_ol_output;
// }
// } else {
// ext_esc_ramp = 0; //Return ESC Ramp to 0
// ext_esc_output = 1000; //Just to be sure ESC output is 0
//}
// _rc->OutputCh(AP_MOTORS_HELI_EXT_ESC, ext_esc_output);
// break;
default :
break ;
}
} ;