ardupilot/libraries/AP_KDECAN/AP_KDECAN.cpp

752 lines
29 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_KDECAN.cpp
*
* Author: Francisco Ferreira
*/
#include <AP_HAL/AP_HAL.h>
#if HAL_WITH_UAVCAN
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
#include <AP_Common/AP_Common.h>
#include <AP_HAL/utility/sparse-endian.h>
#include <SRV_Channel/SRV_Channel.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_Math/AP_Math.h>
#include <AP_Motors/AP_Motors.h>
#include <AP_Logger/AP_Logger.h>
#include "AP_KDECAN.h"
extern const AP_HAL::HAL& hal;
#define debug_can(level_debug, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(_driver_index)) { printf(fmt, ##args); }} while (0)
#define DEFAULT_NUM_POLES 14
// table of user settable CAN bus parameters
const AP_Param::GroupInfo AP_KDECAN::var_info[] = {
// @Param: NPOLE
// @DisplayName: Number of motor poles
// @Description: Sets the number of motor poles to calculate the correct RPM value
AP_GROUPINFO("NPOLE", 1, AP_KDECAN, _num_poles, DEFAULT_NUM_POLES),
AP_GROUPEND
};
const uint16_t AP_KDECAN::SET_PWM_MIN_INTERVAL_US;
AP_KDECAN::AP_KDECAN()
{
AP_Param::setup_object_defaults(this, var_info);
debug_can(2, "KDECAN: constructed\n\r");
}
AP_KDECAN *AP_KDECAN::get_kdecan(uint8_t driver_index)
{
if (driver_index >= AP::can().get_num_drivers() ||
AP::can().get_protocol_type(driver_index) != AP_BoardConfig_CAN::Protocol_Type_KDECAN) {
return nullptr;
}
return static_cast<AP_KDECAN*>(AP::can().get_driver(driver_index));
}
void AP_KDECAN::init(uint8_t driver_index, bool enable_filters)
{
_driver_index = driver_index;
debug_can(2, "KDECAN: starting init\n\r");
if (_initialized) {
debug_can(1, "KDECAN: already initialized\n\r");
return;
}
// get CAN manager instance
AP_HAL::CANManager* can_mgr = hal.can_mgr[driver_index];
if (can_mgr == nullptr) {
debug_can(1, "KDECAN: no mgr for this driver\n\r");
return;
}
if (!can_mgr->is_initialized()) {
debug_can(1, "KDECAN: mgr not initialized\n\r");
return;
}
// store pointer to CAN driver
_can_driver = can_mgr->get_driver();
if (_can_driver == nullptr) {
debug_can(1, "KDECAN: no CAN driver\n\r");
return;
}
// find available KDE ESCs
frame_id_t id = { { .object_address = ESC_INFO_OBJ_ADDR,
.destination_id = BROADCAST_NODE_ID,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
uavcan::CanFrame frame { (id.value | uavcan::CanFrame::FlagEFF), nullptr, 0 };
if(!_can_driver->getIface(CAN_IFACE_INDEX)->send(frame, uavcan::MonotonicTime::fromMSec(AP_HAL::millis() + 1000), 0)) {
debug_can(1, "KDECAN: couldn't send discovery message\n\r");
return;
}
debug_can(2, "KDECAN: discovery message sent\n\r");
uint32_t start = AP_HAL::millis();
// wait 1 second for answers
while (AP_HAL::millis() - start < 1000) {
uavcan::CanFrame esc_id_frame {};
uavcan::MonotonicTime time {};
uavcan::UtcTime utc_time {};
uavcan::CanIOFlags flags {};
int16_t n = _can_driver->getIface(CAN_IFACE_INDEX)->receive(esc_id_frame, time, utc_time, flags);
if (n != 1) {
continue;
}
if (!esc_id_frame.isExtended()) {
continue;
}
if (esc_id_frame.dlc != 5) {
continue;
}
id.value = esc_id_frame.id & uavcan::CanFrame::MaskExtID;
if (id.source_id == BROADCAST_NODE_ID ||
id.source_id >= (KDECAN_MAX_NUM_ESCS + ESC_NODE_ID_FIRST) ||
id.destination_id != AUTOPILOT_NODE_ID ||
id.object_address != ESC_INFO_OBJ_ADDR) {
continue;
}
_esc_present_bitmask |= (1 << (id.source_id - ESC_NODE_ID_FIRST));
_esc_max_node_id = id.source_id - ESC_NODE_ID_FIRST + 1;
debug_can(2, "KDECAN: found ESC id %u\n\r", id.source_id);
}
snprintf(_thread_name, sizeof(_thread_name), "kdecan_%u", driver_index);
// start thread for receiving and sending CAN frames
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_KDECAN::loop, void), _thread_name, 4096, AP_HAL::Scheduler::PRIORITY_CAN, 0)) {
debug_can(1, "KDECAN: couldn't create thread\n\r");
return;
}
_initialized = true;
debug_can(2, "KDECAN: init done\n\r");
return;
}
void AP_KDECAN::loop()
{
uavcan::MonotonicTime timeout;
uavcan::CanFrame empty_frame { (0 | uavcan::CanFrame::FlagEFF), nullptr, 0 };
const uavcan::CanFrame* select_frames[uavcan::MaxCanIfaces] { };
select_frames[CAN_IFACE_INDEX] = &empty_frame;
uint16_t output_buffer[KDECAN_MAX_NUM_ESCS] {};
enumeration_state_t enumeration_state = _enumeration_state;
uint64_t enumeration_start = 0;
uint8_t enumeration_esc_num = 0;
const uint32_t LOOP_INTERVAL_US = MIN(AP::scheduler().get_loop_period_us(), SET_PWM_MIN_INTERVAL_US);
uint64_t pwm_last_sent = 0;
uint8_t sending_esc_num = 0;
uint64_t telemetry_last_request = 0;
while (true) {
if (!_initialized) {
debug_can(2, "KDECAN: not initialized\n\r");
hal.scheduler->delay_microseconds(2000);
continue;
}
uavcan::CanSelectMasks inout_mask;
uint64_t now = AP_HAL::micros64();
// get latest enumeration state set from GCS
if (_enum_sem.take(1)) {
enumeration_state = _enumeration_state;
_enum_sem.give();
} else {
debug_can(2, "KDECAN: failed to get enumeration semaphore on loop\n\r");
}
if (enumeration_state != ENUMERATION_STOPPED) {
// check if enumeration timed out
if (enumeration_start != 0 && now - enumeration_start >= ENUMERATION_TIMEOUT_MS * 1000) {
enumeration_start = 0;
WITH_SEMAPHORE(_enum_sem);
// check if enumeration state didn't change or was set to stop
if (enumeration_state == _enumeration_state || _enumeration_state == ENUMERATION_STOP) {
enumeration_state = _enumeration_state = ENUMERATION_STOPPED;
}
continue;
}
timeout = uavcan::MonotonicTime::fromUSec(now + 1000);
switch (enumeration_state) {
case ENUMERATION_START: {
inout_mask.write = 1 << CAN_IFACE_INDEX;
// send broadcast frame to start enumeration
frame_id_t id = { { .object_address = ENUM_OBJ_ADDR,
.destination_id = BROADCAST_NODE_ID,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
be16_t data = htobe16((uint16_t) ENUMERATION_TIMEOUT_MS);
uavcan::CanFrame frame { (id.value | uavcan::CanFrame::FlagEFF), (uint8_t*) &data, sizeof(data) };
uavcan::CanSelectMasks in_mask = inout_mask;
select_frames[CAN_IFACE_INDEX] = &frame;
// wait for write space to be available
_can_driver->select(inout_mask, select_frames, timeout);
select_frames[CAN_IFACE_INDEX] = &empty_frame;
if (in_mask.write & inout_mask.write) {
now = AP_HAL::micros64();
timeout = uavcan::MonotonicTime::fromUSec(now + ENUMERATION_TIMEOUT_MS * 1000);
int8_t res = _can_driver->getIface(CAN_IFACE_INDEX)->send(frame, timeout, 0);
if (res == 1) {
enumeration_start = now;
enumeration_esc_num = 0;
_esc_present_bitmask = 0;
_esc_max_node_id = 0;
WITH_SEMAPHORE(_enum_sem);
if (enumeration_state == _enumeration_state) {
enumeration_state = _enumeration_state = ENUMERATION_RUNNING;
}
} else if (res == 0) {
debug_can(1, "KDECAN: strange buffer full when starting ESC enumeration\n\r");
break;
} else {
debug_can(1, "KDECAN: error sending message to start ESC enumeration, result %d\n\r", res);
break;
}
} else {
break;
}
FALLTHROUGH;
}
case ENUMERATION_RUNNING: {
inout_mask.read = 1 << CAN_IFACE_INDEX;
inout_mask.write = 0;
// wait for enumeration messages from ESCs
uavcan::CanSelectMasks in_mask = inout_mask;
_can_driver->select(inout_mask, select_frames, timeout);
if (in_mask.read & inout_mask.read) {
uavcan::CanFrame recv_frame;
uavcan::MonotonicTime time;
uavcan::UtcTime utc_time;
uavcan::CanIOFlags flags {};
int16_t res = _can_driver->getIface(CAN_IFACE_INDEX)->receive(recv_frame, time, utc_time, flags);
if (res == 1) {
if (time.toUSec() < enumeration_start) {
// old message
break;
}
frame_id_t id { .value = recv_frame.id & uavcan::CanFrame::MaskExtID };
if (id.object_address == UPDATE_NODE_ID_OBJ_ADDR) {
// reply from setting new node ID
_esc_present_bitmask |= 1 << (id.source_id - ESC_NODE_ID_FIRST);
_esc_max_node_id = MAX(_esc_max_node_id, id.source_id - ESC_NODE_ID_FIRST + 1);
break;
} else if (id.object_address != ENUM_OBJ_ADDR) {
// discardable frame, only looking for enumeration
break;
}
// try to set node ID for the received ESC
while (AP_HAL::micros64() - enumeration_start < ENUMERATION_TIMEOUT_MS * 1000) {
inout_mask.read = 0;
inout_mask.write = 1 << CAN_IFACE_INDEX;
// wait for write space to be available
in_mask = inout_mask;
_can_driver->select(inout_mask, select_frames, timeout);
if (in_mask.write & inout_mask.write) {
id = { { .object_address = UPDATE_NODE_ID_OBJ_ADDR,
.destination_id = uint8_t(enumeration_esc_num + ESC_NODE_ID_FIRST),
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
uavcan::CanFrame send_frame { (id.value | uavcan::CanFrame::FlagEFF), (uint8_t*) &recv_frame.data, recv_frame.dlc };
timeout = uavcan::MonotonicTime::fromUSec(enumeration_start + ENUMERATION_TIMEOUT_MS * 1000);
res = _can_driver->getIface(CAN_IFACE_INDEX)->send(send_frame, timeout, 0);
if (res == 1) {
enumeration_esc_num++;
break;
} else if (res == 0) {
debug_can(1, "KDECAN: strange buffer full when setting ESC node ID\n\r");
} else {
debug_can(1, "KDECAN: error sending message to set ESC node ID, result %d\n\r", res);
}
}
}
} else if (res == 0) {
debug_can(1, "KDECAN: strange failed read when getting ESC enumeration message\n\r");
} else {
debug_can(1, "KDECAN: error receiving ESC enumeration message, result %d\n\r", res);
}
}
break;
}
case ENUMERATION_STOP: {
inout_mask.write = 1 << CAN_IFACE_INDEX;
// send broadcast frame to stop enumeration
frame_id_t id = { { .object_address = ENUM_OBJ_ADDR,
.destination_id = BROADCAST_NODE_ID,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
le16_t data = htole16((uint16_t) ENUMERATION_TIMEOUT_MS);
uavcan::CanFrame frame { (id.value | uavcan::CanFrame::FlagEFF), (uint8_t*) &data, sizeof(data) };
uavcan::CanSelectMasks in_mask = inout_mask;
select_frames[CAN_IFACE_INDEX] = &frame;
// wait for write space to be available
_can_driver->select(inout_mask, select_frames, timeout);
select_frames[CAN_IFACE_INDEX] = &empty_frame;
if (in_mask.write & inout_mask.write) {
timeout = uavcan::MonotonicTime::fromUSec(enumeration_start + ENUMERATION_TIMEOUT_MS * 1000);
int8_t res = _can_driver->getIface(CAN_IFACE_INDEX)->send(frame, timeout, 0);
if (res == 1) {
enumeration_start = 0;
WITH_SEMAPHORE(_enum_sem);
if (enumeration_state == _enumeration_state) {
enumeration_state = _enumeration_state = ENUMERATION_STOPPED;
}
} else if (res == 0) {
debug_can(1, "KDECAN: strange buffer full when stop ESC enumeration\n\r");
} else {
debug_can(1, "KDECAN: error sending message to stop ESC enumeration, result %d\n\r", res);
}
}
break;
}
case ENUMERATION_STOPPED:
default:
debug_can(2, "KDECAN: something wrong happened, shouldn't be here, enumeration state: %u\n\r", enumeration_state);
break;
}
continue;
}
if (!_esc_present_bitmask) {
debug_can(1, "KDECAN: no valid ESC present");
hal.scheduler->delay(1000);
continue;
}
// always look for received frames
inout_mask.read = 1 << CAN_IFACE_INDEX;
timeout = uavcan::MonotonicTime::fromUSec(now + LOOP_INTERVAL_US);
// check if:
// - is currently sending throttle frames, OR
// - there are new output values and, a throttle frame was never sent or it's no longer in CAN queue, OR
// - it is time to send throttle frames again, regardless of new output values, OR
// - it is time to ask for telemetry information
if (sending_esc_num > 0 ||
(_new_output.load(std::memory_order_acquire) && (pwm_last_sent == 0 || now - pwm_last_sent > SET_PWM_TIMEOUT_US)) ||
(pwm_last_sent != 0 && (now - pwm_last_sent > SET_PWM_MIN_INTERVAL_US)) ||
(now - telemetry_last_request > TELEMETRY_INTERVAL_US)) {
inout_mask.write = 1 << CAN_IFACE_INDEX;
} else { // don't need to send frame, choose the maximum time we'll wait for receiving a frame
uint64_t next_action = MIN(now + LOOP_INTERVAL_US, telemetry_last_request + TELEMETRY_INTERVAL_US);
if (pwm_last_sent != 0) {
next_action = MIN(next_action, pwm_last_sent + SET_PWM_MIN_INTERVAL_US);
}
timeout = uavcan::MonotonicTime::fromUSec(next_action);
}
// wait for write space or receive frame
uavcan::CanSelectMasks in_mask = inout_mask;
_can_driver->select(inout_mask, select_frames, timeout);
if (in_mask.read & inout_mask.read) {
uavcan::CanFrame frame;
uavcan::MonotonicTime time;
uavcan::UtcTime utc_time;
uavcan::CanIOFlags flags {};
int16_t res = _can_driver->getIface(CAN_IFACE_INDEX)->receive(frame, time, utc_time, flags);
if (res == 1) {
frame_id_t id { .value = frame.id & uavcan::CanFrame::MaskExtID };
// check if frame is valid: directed at autopilot, doesn't come from broadcast and ESC was detected before
if (id.destination_id == AUTOPILOT_NODE_ID &&
id.source_id != BROADCAST_NODE_ID &&
(1 << (id.source_id - ESC_NODE_ID_FIRST) & _esc_present_bitmask)) {
switch (id.object_address) {
case TELEMETRY_OBJ_ADDR: {
if (frame.dlc != 8) {
break;
}
if (!_telem_sem.take(1)) {
debug_can(2, "KDECAN: failed to get telemetry semaphore on write\n\r");
break;
}
_telemetry[id.source_id - ESC_NODE_ID_FIRST].time = time.toUSec();
_telemetry[id.source_id - ESC_NODE_ID_FIRST].voltage = frame.data[0] << 8 | frame.data[1];
_telemetry[id.source_id - ESC_NODE_ID_FIRST].current = frame.data[2] << 8 | frame.data[3];
_telemetry[id.source_id - ESC_NODE_ID_FIRST].rpm = frame.data[4] << 8 | frame.data[5];
_telemetry[id.source_id - ESC_NODE_ID_FIRST].temp = frame.data[6];
_telemetry[id.source_id - ESC_NODE_ID_FIRST].new_data = true;
_telem_sem.give();
break;
}
default:
// discard frame
break;
}
}
}
}
if (in_mask.write & inout_mask.write) {
now = AP_HAL::micros64();
bool new_output = _new_output.load(std::memory_order_acquire);
if (sending_esc_num > 0) {
// currently sending throttle frames, check it didn't timeout
if (now - pwm_last_sent > SET_PWM_TIMEOUT_US) {
debug_can(2, "KDECAN: timed-out after sending frame to ESC with ID %d\n\r", sending_esc_num - 1);
sending_esc_num = 0;
}
}
if (sending_esc_num == 0 && new_output) {
if (!_rc_out_sem.take(1)) {
debug_can(2, "KDECAN: failed to get PWM semaphore on read\n\r");
continue;
}
memcpy(output_buffer, _scaled_output, KDECAN_MAX_NUM_ESCS * sizeof(uint16_t));
_rc_out_sem.give();
}
// check if:
// - is currently sending throttle frames, OR
// - there are new output values and, a throttle frame was never sent or it's no longer in CAN queue, OR
// - it is time to send throttle frames again, regardless of new output values
if (sending_esc_num > 0 ||
(new_output && (pwm_last_sent == 0 || now - pwm_last_sent > SET_PWM_TIMEOUT_US)) ||
(pwm_last_sent != 0 && (now - pwm_last_sent > SET_PWM_MIN_INTERVAL_US))) {
for (uint8_t esc_num = sending_esc_num; esc_num < _esc_max_node_id; esc_num++) {
if ((_esc_present_bitmask & (1 << esc_num)) == 0) {
continue;
}
be16_t kde_pwm = htobe16(output_buffer[esc_num]);
if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) {
kde_pwm = 0;
}
frame_id_t id = { { .object_address = SET_PWM_OBJ_ADDR,
.destination_id = uint8_t(esc_num + ESC_NODE_ID_FIRST),
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
uavcan::CanFrame frame { (id.value | uavcan::CanFrame::FlagEFF), (uint8_t*) &kde_pwm, sizeof(kde_pwm) };
if (esc_num == 0) {
timeout = uavcan::MonotonicTime::fromUSec(now + SET_PWM_TIMEOUT_US);
} else {
timeout = uavcan::MonotonicTime::fromUSec(pwm_last_sent + SET_PWM_TIMEOUT_US);
}
int8_t res = _can_driver->getIface(CAN_IFACE_INDEX)->send(frame, timeout, 0);
if (res == 1) {
if (esc_num == 0) {
pwm_last_sent = now;
if (new_output) {
_new_output.store(false, std::memory_order_release);
}
}
sending_esc_num = (esc_num + 1) % _esc_max_node_id;
} else if (res == 0) {
debug_can(1, "KDECAN: strange buffer full when sending message to ESC with ID %d\n\r", esc_num + ESC_NODE_ID_FIRST);
} else {
debug_can(1, "KDECAN: error sending message to ESC with ID %d, result %d\n\r", esc_num + ESC_NODE_ID_FIRST, res);
}
break;
}
} else if (now - telemetry_last_request > TELEMETRY_INTERVAL_US) {
// broadcast telemetry request frame
frame_id_t id = { { .object_address = TELEMETRY_OBJ_ADDR,
.destination_id = BROADCAST_NODE_ID,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
uavcan::CanFrame frame { (id.value | uavcan::CanFrame::FlagEFF), nullptr, 0 };
timeout = uavcan::MonotonicTime::fromUSec(now + TELEMETRY_TIMEOUT_US);
int8_t res = _can_driver->getIface(CAN_IFACE_INDEX)->send(frame, timeout, 0);
if (res == 1) {
telemetry_last_request = now;
} else if (res == 0) {
debug_can(1, "KDECAN: strange buffer full when sending message requesting telemetry\n\r");
} else {
debug_can(1, "KDECAN: error sending message requesting telemetry, result %d\n\r", res);
}
}
}
}
}
void AP_KDECAN::update()
{
if (_rc_out_sem.take(1)) {
for (uint8_t i = 0; i < KDECAN_MAX_NUM_ESCS; i++) {
if ((_esc_present_bitmask & (1 << i)) == 0) {
continue;
}
SRV_Channel::Aux_servo_function_t motor_function = SRV_Channels::get_motor_function(i);
if (SRV_Channels::function_assigned(motor_function)) {
float norm_output = SRV_Channels::get_output_norm(motor_function);
_scaled_output[i] = uint16_t((norm_output + 1.0f) / 2.0f * 2000.0f);
} else {
_scaled_output[i] = 0;
}
}
_rc_out_sem.give();
_new_output.store(true, std::memory_order_release);
} else {
debug_can(2, "KDECAN: failed to get PWM semaphore on write\n\r");
}
AP_Logger *logger = AP_Logger::get_singleton();
if (logger == nullptr || !logger->should_log(0xFFFFFFFF)) {
return;
}
if (!_telem_sem.take(1)) {
debug_can(2, "KDECAN: failed to get telemetry semaphore on DF read\n\r");
return;
}
telemetry_info_t telem_buffer[KDECAN_MAX_NUM_ESCS] {};
for (uint8_t i = 0; i < _esc_max_node_id; i++) {
if (_telemetry[i].new_data) {
telem_buffer[i] = _telemetry[i];
_telemetry[i].new_data = false;
}
}
_telem_sem.give();
uint8_t num_poles = _num_poles > 0 ? _num_poles : DEFAULT_NUM_POLES;
// log ESC telemetry data
for (uint8_t i = 0; i < _esc_max_node_id; i++) {
if (telem_buffer[i].new_data) {
logger->Write_ESC(i, telem_buffer[i].time,
int32_t(telem_buffer[i].rpm * 60UL * 2 / num_poles * 100),
telem_buffer[i].voltage,
telem_buffer[i].current,
int16_t(telem_buffer[i].temp * 100U), 0);
}
}
}
bool AP_KDECAN::pre_arm_check(char* reason, uint8_t reason_len)
{
if (!_enum_sem.take(1)) {
debug_can(2, "KDECAN: failed to get enumeration semaphore on read\n\r");
snprintf(reason, reason_len ,"KDECAN enumeration state unknown");
return false;
}
if (_enumeration_state != ENUMERATION_STOPPED) {
snprintf(reason, reason_len ,"KDECAN enumeration running");
_enum_sem.give();
return false;
}
_enum_sem.give();
uint16_t motors_mask = 0;
AP_Motors *motors = AP_Motors::get_singleton();
if (motors) {
motors_mask = motors->get_motor_mask();
}
uint8_t num_expected_motors = __builtin_popcount(motors_mask);
uint8_t num_present_escs = __builtin_popcount(_esc_present_bitmask);
if (num_present_escs < num_expected_motors) {
snprintf(reason, reason_len ,"Not enough KDECAN ESCs detected");
return false;
}
if (num_present_escs > num_expected_motors) {
snprintf(reason, reason_len ,"Too many KDECAN ESCs detected");
return false;
}
if (_esc_max_node_id != num_expected_motors) {
snprintf(reason, reason_len ,"Wrong KDECAN node IDs, run enumeration");
return false;
}
return true;
}
void AP_KDECAN::send_mavlink(uint8_t chan)
{
if (!_telem_sem.take(1)) {
debug_can(2, "KDECAN: failed to get telemetry semaphore on MAVLink read\n\r");
return;
}
telemetry_info_t telem_buffer[KDECAN_MAX_NUM_ESCS];
memcpy(telem_buffer, _telemetry, sizeof(telemetry_info_t) * KDECAN_MAX_NUM_ESCS);
_telem_sem.give();
uint16_t voltage[4] {};
uint16_t current[4] {};
uint16_t rpm[4] {};
uint8_t temperature[4] {};
uint16_t totalcurrent[4] {};
uint16_t count[4] {};
uint8_t num_poles = _num_poles > 0 ? _num_poles : DEFAULT_NUM_POLES;
uint64_t now = AP_HAL::micros64();
for (uint8_t i = 0; i < _esc_max_node_id && i < 8; i++) {
uint8_t idx = i % 4;
if (telem_buffer[i].time && (now - telem_buffer[i].time < 1000000)) {
voltage[idx] = telem_buffer[i].voltage;
current[idx] = telem_buffer[i].current;
rpm[idx] = uint16_t(telem_buffer[i].rpm * 60UL * 2 / num_poles);
temperature[idx] = telem_buffer[i].temp;
} else {
voltage[idx] = 0;
current[idx] = 0;
rpm[idx] = 0;
temperature[idx] = 0;
}
if (idx == 3 || i == _esc_max_node_id - 1) {
if (!HAVE_PAYLOAD_SPACE((mavlink_channel_t)chan, ESC_TELEMETRY_1_TO_4)) {
return;
}
if (i < 4) {
mavlink_msg_esc_telemetry_1_to_4_send((mavlink_channel_t)chan, temperature, voltage, current, totalcurrent, rpm, count);
} else {
mavlink_msg_esc_telemetry_5_to_8_send((mavlink_channel_t)chan, temperature, voltage, current, totalcurrent, rpm, count);
}
}
}
}
bool AP_KDECAN::run_enumeration(bool start_stop)
{
if (!_enum_sem.take(1)) {
debug_can(2, "KDECAN: failed to get enumeration semaphore on write\n\r");
return false;
}
if (start_stop) {
_enumeration_state = ENUMERATION_START;
} else if (_enumeration_state != ENUMERATION_STOPPED) {
_enumeration_state = ENUMERATION_STOP;
}
_enum_sem.give();
return true;
}
#endif // HAL_WITH_UAVCAN