ardupilot/libraries/AP_Compass/AP_Compass_AK8963.cpp

557 lines
16 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_Compass_AK8963.cpp
* Code by Georgii Staroselskii. Emlid.com
*
* Sensor is conected to SPI port
*
*/
#include <AP_Math.h>
#include <AP_HAL.h>
#include "AP_Compass_AK8963.h"
#define READ_FLAG 0x80
#define MPUREG_I2C_SLV0_ADDR 0x25
#define MPUREG_I2C_SLV0_REG 0x26
#define MPUREG_I2C_SLV0_CTRL 0x27
#define MPUREG_EXT_SENS_DATA_00 0x49
#define MPUREG_I2C_SLV0_DO 0x63
#define MPU9250_SPI_BACKEND 1
#define MPUREG_PWR_MGMT_1 0x6B
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
/* bit definitions for MPUREG_USER_CTRL */
#define MPUREG_USER_CTRL 0x6A
# define BIT_USER_CTRL_I2C_MST_EN 0x20 /* Enable MPU to act as the I2C Master to external slave sensors */
# define BIT_USER_CTRL_I2C_IF_DIS 0x10
/* bit definitions for MPUREG_MST_CTRL */
#define MPUREG_I2C_MST_CTRL 0x24
# define I2C_SLV0_EN 0x80
# define I2C_MST_CLOCK_400KHZ 0x0D
#define AK8963_I2C_ADDR 0x0c
#define AK8963_WIA 0x00
# define AK8963_Device_ID 0x48
#define AK8963_INFO 0x01
#define AK8963_ST1 0x02
# define AK8963_DRDY 0x01
# define AK8963_DOR 0x02
#define AK8963_HXL 0x03
/* bit definitions for AK8963 CNTL1 */
#define AK8963_CNTL1 0x0A
# define AK8963_CONTINUOUS_MODE1 0x2
# define AK8963_CONTINUOUS_MODE2 0x6
# define AK8963_SELFTEST_MODE 0x8
# define AK8963_POWERDOWN_MODE 0x0
# define AK8963_FUSE_MODE 0xf
# define AK8963_16BIT_ADC 0x10
# define AK8963_14BIT_ADC 0x00
#define AK8963_CNTL2 0x0B
# define AK8963_RESET 0x01
#define AK8963_ASTC 0x0C
# define AK8983_SELFTEST_MAGNETIC_FIELD_ON 0x40
#define AK8963_ASAX 0x10
#define AK8963_DEBUG 0
#define AK8963_SELFTEST 0
#if AK8963_DEBUG
#define error(...) fprintf(stderr, __VA_ARGS__)
#define debug(...) hal.console->printf(__VA_ARGS__)
#define ASSERT(x) assert(x)
#else
#define error(...)
#define debug(...)
#define ASSERT(x)
#endif
extern const AP_HAL::HAL& hal;
AK8963_MPU9250_SPI_Backend::AK8963_MPU9250_SPI_Backend()
{
}
bool AK8963_MPU9250_SPI_Backend::sem_take_blocking()
{
return _spi_sem->take(10);
}
bool AK8963_MPU9250_SPI_Backend::sem_give()
{
return _spi_sem->give();
}
bool AK8963_MPU9250_SPI_Backend::sem_take_nonblocking()
{
/**
* Take nonblocking from a TimerProcess context &
* monitor for bad failures
*/
static int _sem_failure_count = 0;
bool got = _spi_sem->take_nonblocking();
if (!got) {
if (!hal.scheduler->system_initializing()) {
_sem_failure_count++;
if (_sem_failure_count > 100) {
hal.scheduler->panic(PSTR("PANIC: failed to take _spi_sem "
"100 times in a row, in "
"AP_Compass_AK8963::_update"));
}
}
return false; /* never reached */
} else {
_sem_failure_count = 0;
}
return got;
}
bool AK8963_MPU9250_SPI_Backend::init()
{
_spi = hal.spi->device(AP_HAL::SPIDevice_MPU9250);
if (_spi == NULL) {
hal.console->println_P(PSTR("Cannot get SPIDevice_MPU9250"));
return false;
}
_spi_sem = _spi->get_semaphore();
return true;
}
void AK8963_MPU9250_SPI_Backend::read(uint8_t address, uint8_t *buf, uint32_t count)
{
ASSERT(count < 10);
uint8_t tx[11];
uint8_t rx[11];
tx[0] = address | READ_FLAG;
tx[1] = 0;
_spi->transaction(tx, rx, count + 1);
memcpy(buf, rx + 1, count);
}
void AK8963_MPU9250_SPI_Backend::write(uint8_t address, const uint8_t *buf, uint32_t count)
{
ASSERT(count < 2);
uint8_t tx[2];
tx[0] = address;
memcpy(tx+1, buf, count);
_spi->transaction(tx, NULL, count + 1);
}
AP_Compass_AK8963_MPU9250::AP_Compass_AK8963_MPU9250(Compass &compass):
AP_Compass_AK8963(compass)
{
}
// detect the sensor
AP_Compass_Backend *AP_Compass_AK8963_MPU9250::detect(Compass &compass)
{
AP_Compass_AK8963_MPU9250 *sensor = new AP_Compass_AK8963_MPU9250(compass);
if (sensor == NULL) {
return NULL;
}
if (!sensor->init()) {
delete sensor;
return NULL;
}
return sensor;
}
void AP_Compass_AK8963_MPU9250::_dump_registers()
{
#if AK8963_DEBUG
error(PSTR("MPU9250 registers\n"));
for (uint8_t reg=0x00; reg<=0x7E; reg++) {
uint8_t v = _backend->read(reg);
error(("%02x:%02x "), (unsigned)reg, (unsigned)v);
if (reg % 16 == 0) {
error("\n");
}
}
error("\n");
#endif
}
void AP_Compass_AK8963_MPU9250::_backend_reset()
{
_backend->write(MPUREG_PWR_MGMT_1, BIT_PWR_MGMT_1_DEVICE_RESET);
}
bool AP_Compass_AK8963_MPU9250::_backend_init()
{
_backend->write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_MST_EN); /* I2C Master mode */
_backend->write(MPUREG_I2C_MST_CTRL, I2C_MST_CLOCK_400KHZ); /* I2C configuration multi-master IIC 400KHz */
return true;
}
bool AP_Compass_AK8963_MPU9250::init()
{
#if MPU9250_SPI_BACKEND
_backend = new AK8963_MPU9250_SPI_Backend();
if (_backend == NULL) {
hal.scheduler->panic(PSTR("_backend coudln't be allocated"));
}
if (!_backend->init()) {
delete _backend;
_backend = NULL;
return false;
}
return AP_Compass_AK8963::init();
#else
#error Wrong backend for AK8963 is selected
/* other backends not implented yet */
return false;
#endif
}
void AP_Compass_AK8963_MPU9250::_register_write(uint8_t address, uint8_t value)
{
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR); /* Set the I2C slave addres of AK8963 and set for _register_write. */
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
_backend->write(MPUREG_I2C_SLV0_DO, value); /* Register value to continuous measurement in 16-bit */
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | 0x01); /* Enable I2C and set 1 byte */
}
void AP_Compass_AK8963_MPU9250::_register_read(uint8_t address, uint8_t count, uint8_t *value)
{
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */
hal.scheduler->delay(10);
_backend->read(MPUREG_EXT_SENS_DATA_00, value, count);
}
uint8_t AP_Compass_AK8963_MPU9250::_read_id()
{
return 1;
}
bool AP_Compass_AK8963_MPU9250::read_raw()
{
uint8_t rx[14] = {0};
const uint8_t count = 9;
_backend->read(MPUREG_EXT_SENS_DATA_00, rx, count);
uint8_t st2 = rx[8]; /* End data read by reading ST2 register */
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx + 1] << 8) | v[2*idx]))
if(!(st2 & 0x08)) {
_mag_x = (float) int16_val(rx, 1);
_mag_y = (float) int16_val(rx, 2);
_mag_z = (float) int16_val(rx, 3);
if (_mag_x == 0 && _mag_y == 0 && _mag_z == 0) {
return false;
}
return true;
} else {
return false;
}
}
AP_Compass_AK8963::AP_Compass_AK8963(Compass &compass) :
AP_Compass_Backend(compass),
_backend(NULL),
_initialised(false),
_state(CONVERSION),
_last_update_timestamp(0),
_last_accum_time(0)
{
_initialised = false;
_mag_x_accum =_mag_y_accum = _mag_z_accum = 0;
_mag_x =_mag_y = _mag_z = 0;
_accum_count = 0;
_magnetometer_adc_resolution = AK8963_16BIT_ADC;
}
/* stub to satisfy Compass API*/
void AP_Compass_AK8963::accumulate(void)
{
}
bool AP_Compass_AK8963::_self_test()
{
bool success = false;
/* see AK8963.pdf p.19 */
/* Set power-down mode */
_register_write(AK8963_CNTL1, AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution);
/* Turn the internal magnetic field on */
_register_write(AK8963_ASTC, AK8983_SELFTEST_MAGNETIC_FIELD_ON);
/* Register value to self-test mode in 14-bit */
_register_write(AK8963_CNTL1, AK8963_SELFTEST_MODE | _magnetometer_adc_resolution);
_start_conversion();
hal.scheduler->delay(20);
read_raw();
float hx = _mag_x;
float hy = _mag_y;
float hz = _mag_z;
error("AK8963's SELF-TEST STARTED\n");
switch (_magnetometer_adc_resolution) {
bool hx_is_in_range;
bool hy_is_in_range;
bool hz_is_in_range;
case AK8963_14BIT_ADC:
hx_is_in_range = (hx >= - 50) && (hx <= 50);
hy_is_in_range = (hy >= - 50) && (hy <= 50);
hz_is_in_range = (hz >= - 800) && (hz <= -200);
if (hx_is_in_range && hy_is_in_range && hz_is_in_range) {
success = true;
}
break;
case AK8963_16BIT_ADC:
hx_is_in_range = (hx >= -200) && (hx <= 200);
hy_is_in_range = (hy >= -200) && (hy <= 200);
hz_is_in_range = (hz >= -3200) && (hz <= -800);
if (hx_is_in_range && hy_is_in_range && hz_is_in_range) {
success = true;
}
break;
default:
success = false;
hal.scheduler->panic(PSTR("Wrong AK8963's ADC resolution selected"));
break;
}
error("AK8963's SELF-TEST ENDED: %f %f %f\n", hx, hy, hz);
/* Turn the internal magnetic field off */
_register_write(AK8963_ASTC, 0x0);
/* Register value to continuous measurement in 14-bit */
_register_write(AK8963_CNTL1, AK8963_POWERDOWN_MODE | _magnetometer_adc_resolution);
return success;
}
bool AP_Compass_AK8963::init()
{
hal.scheduler->suspend_timer_procs();
if (!_backend->sem_take_blocking()) {
error("_spi_sem->take failed\n");
return false;
}
if (!_backend_init()) {
_backend->sem_give();
return false;
}
_register_write(AK8963_CNTL2, AK8963_RESET); /* Reset AK8963 */
hal.scheduler->delay(1000);
int id_mismatch_count;
uint8_t deviceid;
for (id_mismatch_count = 0; id_mismatch_count < 5; id_mismatch_count++) {
_register_read(AK8963_WIA, 0x01, &deviceid); /* Read AK8963's id */
if (deviceid == AK8963_Device_ID) {
break;
}
error("trying to read AK8963's ID once more...\n");
_backend_reset();
hal.scheduler->delay(100);
_dump_registers();
}
if (id_mismatch_count == 5) {
_initialised = false;
hal.console->printf("WRONG AK8963 DEVICE ID: 0x%x\n", (unsigned)deviceid);
hal.scheduler->panic(PSTR("AK8963: bad DEVICE ID"));
}
_calibrate();
_initialised = true;
#if AK8963_SELFTEST
if (_self_test()) {
_initialised = true;
} else {
_initialised = false;
}
#endif
/* Register value to continuous measurement */
_register_write(AK8963_CNTL1, AK8963_CONTINUOUS_MODE2 | _magnetometer_adc_resolution);
_backend->sem_give();
// register the compass instance in the frontend
_compass_instance = register_compass();
hal.scheduler->resume_timer_procs();
hal.scheduler->register_timer_process( AP_HAL_MEMBERPROC(&AP_Compass_AK8963::_update));
_start_conversion();
_initialised = true;
return _initialised;
}
void AP_Compass_AK8963::_update()
{
if (hal.scheduler->micros() - _last_update_timestamp < 10000) {
return;
}
if (!_backend->sem_take_nonblocking()) {
return;
}
switch (_state)
{
case CONVERSION:
_start_conversion();
_state = SAMPLE;
break;
case SAMPLE:
_collect_samples();
_state = CONVERSION;
break;
case ERROR:
break;
default:
break;
}
_last_update_timestamp = hal.scheduler->micros();
_backend->sem_give();
}
bool AP_Compass_AK8963::_calibrate()
{
error("CALIBRATTION START\n");
_register_write(AK8963_CNTL1, AK8963_FUSE_MODE | _magnetometer_adc_resolution); /* Enable FUSE-mode in order to be able to read calibreation data */
hal.scheduler->delay(10);
uint8_t response[3];
_register_read(AK8963_ASAX, 0x03, response);
for (int i = 0; i < 3; i++) {
float data = response[i];
magnetometer_ASA[i] = ((data-128)/256+1);
error("%d: %lf\n", i, magnetometer_ASA[i]);
}
error("CALIBRATTION END\n");
return true;
}
void AP_Compass_AK8963::read()
{
if (!_initialised) {
return;
}
if (_accum_count == 0) {
/* We're not ready to publish*/
return;
}
/* Update */
Vector3f field(_mag_x_accum * magnetometer_ASA[0],
_mag_y_accum * magnetometer_ASA[1],
_mag_z_accum * magnetometer_ASA[2]);
field /= _accum_count;
_mag_x_accum = _mag_y_accum = _mag_z_accum = 0;
_accum_count = 0;
publish_field(field, _compass_instance);
}
void AP_Compass_AK8963::_start_conversion()
{
static const uint8_t address = AK8963_INFO;
/* Read registers from INFO through ST2 */
static const uint8_t count = 0x09;
_backend_init();
_backend->write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_MST_EN); /* I2C Master mode */
_backend->write(MPUREG_I2C_SLV0_ADDR, AK8963_I2C_ADDR | READ_FLAG); /* Set the I2C slave addres of AK8963 and set for read. */
_backend->write(MPUREG_I2C_SLV0_REG, address); /* I2C slave 0 register address from where to begin data transfer */
_backend->write(MPUREG_I2C_SLV0_CTRL, I2C_SLV0_EN | count); /* Enable I2C and set @count byte */
}
void AP_Compass_AK8963::_collect_samples()
{
if (!_initialised) {
return;
}
if (!read_raw()) {
error("read_raw failed\n");
} else {
_mag_x_accum += _mag_x;
_mag_y_accum += _mag_y;
_mag_z_accum += _mag_z;
_accum_count++;
if (_accum_count == 10) {
_mag_x_accum /= 2;
_mag_y_accum /= 2;
_mag_z_accum /= 2;
_accum_count = 5;
}
}
}