ardupilot/libraries/AP_RobotisServo/AP_RobotisServo.cpp

416 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
implementation of Robotis Dynamixel 2.0 protocol for controlling servos
Portions of this code are based on the dynamixel_sdk code:
https://github.com/ROBOTIS-GIT/DynamixelSDK
which is under the following license:
* Copyright 2017 ROBOTIS CO., LTD.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "AP_RobotisServo.h"
#if AP_ROBOTISSERVO_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/utility/sparse-endian.h>
#include <AP_Math/AP_Math.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include <SRV_Channel/SRV_Channel.h>
extern const AP_HAL::HAL& hal;
#define BROADCAST_ID 0xFE
#define MAX_ID 0xFC
// DXL protocol common commands
#define INST_PING 1
#define INST_READ 2
#define INST_WRITE 3
#define INST_REG_WRITE 4
#define INST_ACTION 5
#define INST_FACTORY_RESET 6
#define INST_CLEAR 16
#define INST_SYNC_WRITE 131
#define INST_BULK_READ 146
// 2.0 protocol commands
#define INST_REBOOT 8
#define INST_STATUS 85
#define INST_SYNC_READ 130
#define INST_BULK_WRITE 147
// 2.0 protocol packet offsets
#define PKT_HEADER0 0
#define PKT_HEADER1 1
#define PKT_HEADER2 2
#define PKT_RESERVED 3
#define PKT_ID 4
#define PKT_LENGTH_L 5
#define PKT_LENGTH_H 6
#define PKT_INSTRUCTION 7
#define PKT_ERROR 8
#define PKT_PARAMETER0 8
/* Macro for Control Table Value */
#define DXL_MAKEWORD(a, b) ((uint16_t)(((uint8_t)(((uint64_t)(a)) & 0xff)) | ((uint16_t)((uint8_t)(((uint64_t)(b)) & 0xff))) << 8))
#define DXL_MAKEDWORD(a, b) ((uint32_t)(((uint16_t)(((uint64_t)(a)) & 0xffff)) | ((uint32_t)((uint16_t)(((uint64_t)(b)) & 0xffff))) << 16))
#define DXL_LOWORD(l) ((uint16_t)(((uint64_t)(l)) & 0xffff))
#define DXL_HIWORD(l) ((uint16_t)((((uint64_t)(l)) >> 16) & 0xffff))
#define DXL_LOBYTE(w) ((uint8_t)(((uint64_t)(w)) & 0xff))
#define DXL_HIBYTE(w) ((uint8_t)((((uint64_t)(w)) >> 8) & 0xff))
// register offsets
#define REG_OPERATING_MODE 11
#define OPMODE_CURR_CONTROL 0
#define OPMODE_VEL_CONTROL 1
#define OPMODE_POS_CONTROL 3
#define OPMODE_EXT_POS_CONTROL 4
#define REG_TORQUE_ENABLE 64
#define REG_STATUS_RETURN 68
#define STATUS_RETURN_NONE 0
#define STATUS_RETURN_READ 1
#define STATUS_RETURN_ALL 2
#define REG_GOAL_POSITION 116
// how many times to send servo configure msgs
#define CONFIGURE_SERVO_COUNT 4
// how many times to send servo detection
#define DETECT_SERVO_COUNT 4
const AP_Param::GroupInfo AP_RobotisServo::var_info[] = {
// @Param: POSMIN
// @DisplayName: Robotis servo position min
// @Description: Position minimum at servo min value. This should be within the position control range of the servos, normally 0 to 4095
// @Range: 0 4095
// @User: Standard
AP_GROUPINFO("POSMIN", 1, AP_RobotisServo, pos_min, 0),
// @Param: POSMAX
// @DisplayName: Robotis servo position max
// @Description: Position maximum at servo max value. This should be within the position control range of the servos, normally 0 to 4095
// @Range: 0 4095
// @User: Standard
AP_GROUPINFO("POSMAX", 2, AP_RobotisServo, pos_max, 4095),
AP_GROUPEND
};
// constructor
AP_RobotisServo::AP_RobotisServo(void)
{
// set defaults from the parameter table
AP_Param::setup_object_defaults(this, var_info);
}
void AP_RobotisServo::init(void)
{
AP_SerialManager &serial_manager = AP::serialmanager();
port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Robotis,0);
if (port) {
baudrate = serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Robotis, 0);
us_per_byte = 10 * 1e6 / baudrate;
us_gap = 4 * 1e6 / baudrate;
}
}
/*
addStuffing() from Robotis SDK. This pads the packet as required by the protocol
*/
void AP_RobotisServo::add_stuffing(uint8_t *packet)
{
int packet_length_in = DXL_MAKEWORD(packet[PKT_LENGTH_L], packet[PKT_LENGTH_H]);
int packet_length_out = packet_length_in;
if (packet_length_in < 8) {
// INSTRUCTION, ADDR_L, ADDR_H, CRC16_L, CRC16_H + FF FF FD
return;
}
uint8_t *packet_ptr;
uint16_t packet_length_before_crc = packet_length_in - 2;
for (uint16_t i = 3; i < packet_length_before_crc; i++) {
packet_ptr = &packet[i+PKT_INSTRUCTION-2];
if (packet_ptr[0] == 0xFF && packet_ptr[1] == 0xFF && packet_ptr[2] == 0xFD) {
packet_length_out++;
}
}
if (packet_length_in == packet_length_out) {
// no stuffing required
return;
}
uint16_t out_index = packet_length_out + 6 - 2; // last index before crc
uint16_t in_index = packet_length_in + 6 - 2; // last index before crc
while (out_index != in_index) {
if (packet[in_index] == 0xFD && packet[in_index-1] == 0xFF && packet[in_index-2] == 0xFF) {
packet[out_index--] = 0xFD; // byte stuffing
if (out_index != in_index) {
packet[out_index--] = packet[in_index--]; // FD
packet[out_index--] = packet[in_index--]; // FF
packet[out_index--] = packet[in_index--]; // FF
}
} else {
packet[out_index--] = packet[in_index--];
}
}
packet[PKT_LENGTH_L] = DXL_LOBYTE(packet_length_out);
packet[PKT_LENGTH_H] = DXL_HIBYTE(packet_length_out);
}
/*
send a protocol 2.0 packet
*/
void AP_RobotisServo::send_packet(uint8_t *txpacket)
{
add_stuffing(txpacket);
// check max packet length
uint16_t total_packet_length = DXL_MAKEWORD(txpacket[PKT_LENGTH_L], txpacket[PKT_LENGTH_H]) + 7;
// make packet header
txpacket[PKT_HEADER0] = 0xFF;
txpacket[PKT_HEADER1] = 0xFF;
txpacket[PKT_HEADER2] = 0xFD;
txpacket[PKT_RESERVED] = 0x00;
// add CRC16
uint16_t crc = crc_crc16_ibm(0, txpacket, total_packet_length - 2); // 2: CRC16
txpacket[total_packet_length - 2] = DXL_LOBYTE(crc);
txpacket[total_packet_length - 1] = DXL_HIBYTE(crc);
port->write(txpacket, total_packet_length);
delay_time_us += total_packet_length * us_per_byte + us_gap;
}
/*
use a broadcast ping to find attached servos
*/
void AP_RobotisServo::detect_servos(void)
{
uint8_t txpacket[10] {};
txpacket[PKT_ID] = BROADCAST_ID;
txpacket[PKT_LENGTH_L] = 3;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_PING;
send_packet(txpacket);
// give plenty of time for replies from all servos
last_send_us = AP_HAL::micros();
delay_time_us += 1000 * us_per_byte;
}
/*
broadcast configure all servos
*/
void AP_RobotisServo::configure_servos(void)
{
// disable torque control
send_command(BROADCAST_ID, REG_TORQUE_ENABLE, 0, 1);
// disable replies unless we read
send_command(BROADCAST_ID, REG_STATUS_RETURN, STATUS_RETURN_READ, 1);
// use position control mode
send_command(BROADCAST_ID, REG_OPERATING_MODE, OPMODE_POS_CONTROL, 1);
// enable torque control
send_command(BROADCAST_ID, REG_TORQUE_ENABLE, 1, 1);
}
/*
send a command to a single servo, changing a register value
*/
void AP_RobotisServo::send_command(uint8_t id, uint16_t reg, uint32_t value, uint8_t len)
{
uint8_t txpacket[16] {};
txpacket[PKT_ID] = id;
txpacket[PKT_LENGTH_L] = 5 + len;
txpacket[PKT_LENGTH_H] = 0;
txpacket[PKT_INSTRUCTION] = INST_WRITE;
txpacket[PKT_INSTRUCTION+1] = DXL_LOBYTE(reg);
txpacket[PKT_INSTRUCTION+2] = DXL_HIBYTE(reg);
// Register values are transmitted as little-endian.
value = htole32(value);
memcpy(&txpacket[PKT_INSTRUCTION+3], &value, MIN(len,4));
send_packet(txpacket);
}
/*
read response bytes
*/
void AP_RobotisServo::read_bytes(void)
{
uint32_t n = port->available();
if (n == 0 && pktbuf_ofs < PKT_INSTRUCTION) {
return;
}
if (n > sizeof(pktbuf) - pktbuf_ofs) {
n = sizeof(pktbuf) - pktbuf_ofs;
}
for (uint8_t i=0; i<n; i++) {
pktbuf[pktbuf_ofs++] = port->read();
}
// discard bad leading data. This should be rare
while (pktbuf_ofs >= 4 &&
(pktbuf[0] != 0xFF || pktbuf[1] != 0xFF || pktbuf[2] != 0xFD || pktbuf[3] != 0x00)) {
memmove(pktbuf, &pktbuf[1], pktbuf_ofs-1);
pktbuf_ofs--;
}
if (pktbuf_ofs < 10) {
// not enough data yet
return;
}
const uint16_t total_packet_length = DXL_MAKEWORD(pktbuf[PKT_LENGTH_L], pktbuf[PKT_LENGTH_H]) + PKT_INSTRUCTION;
if (total_packet_length > sizeof(pktbuf)) {
pktbuf_ofs = 0;
return;
}
if (pktbuf_ofs < total_packet_length) {
// more data needed
return;
}
// check CRC
const uint16_t crc = DXL_MAKEWORD(pktbuf[total_packet_length-2], pktbuf[total_packet_length-1]);
const uint16_t calc_crc = crc_crc16_ibm(0, pktbuf, total_packet_length - 2);
if (calc_crc != crc) {
memmove(pktbuf, &pktbuf[total_packet_length], pktbuf_ofs - total_packet_length);
pktbuf_ofs -= total_packet_length;
return;
}
// process full packet
process_packet(pktbuf, total_packet_length);
memmove(pktbuf, &pktbuf[total_packet_length], pktbuf_ofs - total_packet_length);
pktbuf_ofs -= total_packet_length;
}
/*
process a packet from a servo
*/
void AP_RobotisServo::process_packet(const uint8_t *pkt, uint8_t length)
{
uint8_t id = pkt[PKT_ID];
if (id > 16 || id < 1) {
// discard packets from servos beyond max or min. Note that we
// don't allow servo 0, to make mapping to SERVOn_* parameters
// easier
return;
}
uint32_t id_mask = (1U<<(id-1));
if (!(id_mask & servo_mask)) {
// mark the servo as present
servo_mask |= id_mask;
DEV_PRINTF("Robotis: new servo %u\n", id);
}
}
void AP_RobotisServo::update()
{
if (!initialised) {
initialised = true;
init();
last_send_us = AP_HAL::micros();
return;
}
if (port == nullptr) {
return;
}
read_bytes();
uint32_t now = AP_HAL::micros();
if (last_send_us != 0 && now - last_send_us < delay_time_us) {
// waiting for last send to complete
return;
}
if (detection_count < DETECT_SERVO_COUNT) {
detection_count++;
detect_servos();
return;
}
if (servo_mask == 0) {
return;
}
if (configured_servos < CONFIGURE_SERVO_COUNT) {
configured_servos++;
last_send_us = now;
configure_servos();
return;
}
last_send_us = now;
delay_time_us = 0;
// loop for all 16 channels
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (((1U<<i) & servo_mask) == 0) {
continue;
}
SRV_Channel *c = SRV_Channels::srv_channel(i);
if (c == nullptr) {
continue;
}
const uint16_t pwm = c->get_output_pwm();
const uint16_t min = c->get_output_min();
const uint16_t max = c->get_output_max();
float v = float(pwm - min) / (max - min);
uint32_t value = pos_min + v * (pos_max - pos_min);
send_command(i+1, REG_GOAL_POSITION, value, 4);
}
}
#endif // AP_ROBOTISSERVO_ENABLED