ardupilot/libraries/AP_Mount/AP_Mount_Siyi.cpp

1312 lines
46 KiB
C++

#include "AP_Mount_config.h"
#if HAL_MOUNT_SIYI_ENABLED
#include "AP_Mount_Siyi.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_AHRS/AP_AHRS.h>
#include <GCS_MAVLink/GCS.h>
#include <GCS_MAVLink/include/mavlink/v2.0/checksum.h>
#include <AP_RTC/AP_RTC.h>
extern const AP_HAL::HAL& hal;
#define AP_MOUNT_SIYI_HEADER1 0x55 // first header byte
#define AP_MOUNT_SIYI_HEADER2 0x66 // second header byte
#define AP_MOUNT_SIYI_PACKETLEN_MIN 10 // minimum number of bytes in a packet. this is a packet with no data bytes
#define AP_MOUNT_SIYI_DATALEN_MAX (AP_MOUNT_SIYI_PACKETLEN_MAX-AP_MOUNT_SIYI_PACKETLEN_MIN) // max bytes for data portion of packet
#define AP_MOUNT_SIYI_RATE_MAX_RADS radians(90) // maximum physical rotation rate of gimbal in radans/sec
#define AP_MOUNT_SIYI_PITCH_P 1.50 // pitch controller P gain (converts pitch angle error to target rate)
#define AP_MOUNT_SIYI_YAW_P 1.50 // yaw controller P gain (converts yaw angle error to target rate)
#define AP_MOUNT_SIYI_TIMEOUT_MS 1000 // timeout for health and rangefinder readings
#define AP_MOUNT_SIYI_THERM_TIMEOUT_MS 3000// timeout for temp min/max readings
#define AP_MOUNT_SIYI_DEBUG 0
#define debug(fmt, args ...) do { if (AP_MOUNT_SIYI_DEBUG) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Siyi: " fmt, ## args); } } while (0)
// hardware lookup table indexed by HardwareModel enum values
const AP_Mount_Siyi::HWInfo AP_Mount_Siyi::hardware_lookup_table[] {
{{'0','0'}, "Unknown"},
{{'7','5'}, "A2"},
{{'7','3'}, "A8"},
{{'6','B'}, "ZR10"},
{{'7','8'}, "ZR30"},
{{'8','3'}, "ZT6"},
{{'7','A'}, "ZT30"},
};
// update mount position - should be called periodically
void AP_Mount_Siyi::update()
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// reading incoming packets from gimbal
read_incoming_packets();
// request firmware version during startup at 1hz
// during regular operation request configuration at 1hz
uint32_t now_ms = AP_HAL::millis();
if ((now_ms - _last_send_ms) >= 1000) {
_last_send_ms = now_ms;
if (!_got_hardware_id) {
request_hardware_id();
return;
} else if (!_fw_version.received) {
request_firmware_version();
return;
} else {
request_configuration();
}
#if AP_RTC_ENABLED
// send UTC time to the camera
if (sent_time_count < 5) {
uint64_t utc_usec;
if (AP::rtc().get_utc_usec(utc_usec) &&
send_packet(SiyiCommandId::SET_TIME, (const uint8_t *)&utc_usec, sizeof(utc_usec))) {
sent_time_count++;
}
}
#endif
}
// request attitude at regular intervals
if ((now_ms - _last_req_current_angle_rad_ms) >= 50) {
request_gimbal_attitude();
_last_req_current_angle_rad_ms = now_ms;
}
// request rangefinder distance from ZT30 at 10hz
if ((_hardware_model == HardwareModel::ZT30) && (now_ms - _last_rangefinder_req_ms > 100)) {
request_rangefinder_distance();
_last_rangefinder_req_ms = now_ms;
}
#if AP_MOUNT_SEND_THERMAL_RANGE_ENABLED
// request thermal min/max from ZT30 or ZT6
request_thermal_minmax();
#endif
// send attitude to gimbal at 10Hz
if (now_ms - _last_attitude_send_ms > 100) {
_last_attitude_send_ms = now_ms;
send_attitude_position();
}
// run zoom control
update_zoom_control();
// change to RC_TARGETING mode if RC input has changed
set_rctargeting_on_rcinput_change();
// Get the target angles or rates first depending on the current mount mode
switch (get_mode()) {
case MAV_MOUNT_MODE_RETRACT: {
const Vector3f &angle_bf_target = _params.retract_angles.get();
mnt_target.target_type = MountTargetType::ANGLE;
mnt_target.angle_rad.set(angle_bf_target*DEG_TO_RAD, false);
break;
}
case MAV_MOUNT_MODE_NEUTRAL: {
const Vector3f &angle_bf_target = _params.neutral_angles.get();
mnt_target.target_type = MountTargetType::ANGLE;
mnt_target.angle_rad.set(angle_bf_target*DEG_TO_RAD, false);
break;
}
case MAV_MOUNT_MODE_MAVLINK_TARGETING: {
// mavlink targets are stored while handling the incoming message
break;
}
case MAV_MOUNT_MODE_RC_TARGETING:
update_mnt_target_from_rc_target();
break;
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
if (get_angle_target_to_roi(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
// point mount to Home location
case MAV_MOUNT_MODE_HOME_LOCATION:
if (get_angle_target_to_home(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
// point mount to another vehicle
case MAV_MOUNT_MODE_SYSID_TARGET:
if (get_angle_target_to_sysid(mnt_target.angle_rad)) {
mnt_target.target_type = MountTargetType::ANGLE;
}
break;
default:
// we do not know this mode so raise internal error
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
}
// send target angles or rates depending on the target type
switch (mnt_target.target_type) {
case MountTargetType::ANGLE:
send_target_angles(mnt_target.angle_rad.pitch, mnt_target.angle_rad.yaw, mnt_target.angle_rad.yaw_is_ef);
break;
case MountTargetType::RATE:
send_target_rates(mnt_target.rate_rads.pitch, mnt_target.rate_rads.yaw, mnt_target.rate_rads.yaw_is_ef);
break;
}
}
// return true if healthy
bool AP_Mount_Siyi::healthy() const
{
// unhealthy until gimbal has been found and replied with firmware version info
if (!_initialised || !_fw_version.received) {
return false;
}
// unhealthy if attitude information NOT received recently
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - _last_current_angle_rad_ms > AP_MOUNT_SIYI_TIMEOUT_MS) {
return false;
}
// if we get this far return healthy
return true;
}
// get attitude as a quaternion. returns true on success
bool AP_Mount_Siyi::get_attitude_quaternion(Quaternion& att_quat)
{
// Order of rotation for Siyi gimbals is (yaw, roll, pitch), which is 312 order
att_quat.from_vector312(_current_angle_rad.x, _current_angle_rad.y, _current_angle_rad.z);
return true;
}
// reading incoming packets from gimbal and confirm they are of the correct format
// results are held in the _parsed_msg structure
void AP_Mount_Siyi::read_incoming_packets()
{
// check for bytes on the serial port
int16_t nbytes = MIN(_uart->available(), 1024U);
if (nbytes <= 0 ) {
return;
}
// flag to allow cases below to reset parser state
bool reset_parser = false;
// process bytes received
for (int16_t i = 0; i < nbytes; i++) {
uint8_t b;
if (!_uart->read(b)) {
continue;
}
_msg_buff[_msg_buff_len++] = b;
// protect against overly long messages
if (_msg_buff_len >= AP_MOUNT_SIYI_PACKETLEN_MAX) {
reset_parser = true;
}
// process byte depending upon current state
switch (_parsed_msg.state) {
case ParseState::WAITING_FOR_HEADER_LOW:
if (b == AP_MOUNT_SIYI_HEADER1) {
_parsed_msg.state = ParseState::WAITING_FOR_HEADER_HIGH;
} else {
reset_parser = true;
}
break;
case ParseState::WAITING_FOR_HEADER_HIGH:
if (b == AP_MOUNT_SIYI_HEADER2) {
_parsed_msg.state = ParseState::WAITING_FOR_CTRL;
} else {
reset_parser = true;
}
break;
case ParseState::WAITING_FOR_CTRL:
_parsed_msg.state = ParseState::WAITING_FOR_DATALEN_LOW;
break;
case ParseState::WAITING_FOR_DATALEN_LOW:
_parsed_msg.data_len = b;
_parsed_msg.state = ParseState::WAITING_FOR_DATALEN_HIGH;
break;
case ParseState::WAITING_FOR_DATALEN_HIGH:
_parsed_msg.data_len |= ((uint16_t)b << 8);
// sanity check data length
if (_parsed_msg.data_len <= AP_MOUNT_SIYI_DATALEN_MAX) {
_parsed_msg.state = ParseState::WAITING_FOR_SEQ_LOW;
} else {
reset_parser = true;
debug("data len too large:%u (>%u)", (unsigned)_parsed_msg.data_len, (unsigned)AP_MOUNT_SIYI_DATALEN_MAX);
}
break;
case ParseState::WAITING_FOR_SEQ_LOW:
_parsed_msg.state = ParseState::WAITING_FOR_SEQ_HIGH;
break;
case ParseState::WAITING_FOR_SEQ_HIGH:
_parsed_msg.state = ParseState::WAITING_FOR_CMDID;
break;
case ParseState::WAITING_FOR_CMDID:
_parsed_msg.command_id = b;
_parsed_msg.data_bytes_received = 0;
if (_parsed_msg.data_len > 0) {
_parsed_msg.state = ParseState::WAITING_FOR_DATA;
} else {
_parsed_msg.state = ParseState::WAITING_FOR_CRC_LOW;
}
break;
case ParseState::WAITING_FOR_DATA:
_parsed_msg.data_bytes_received++;
if (_parsed_msg.data_bytes_received >= _parsed_msg.data_len) {
_parsed_msg.state = ParseState::WAITING_FOR_CRC_LOW;
}
break;
case ParseState::WAITING_FOR_CRC_LOW:
_parsed_msg.crc16 = b;
_parsed_msg.state = ParseState::WAITING_FOR_CRC_HIGH;
break;
case ParseState::WAITING_FOR_CRC_HIGH:
_parsed_msg.crc16 |= ((uint16_t)b << 8);
// check crc
const uint16_t expected_crc = crc16_ccitt(_msg_buff, _msg_buff_len-2, 0);
if (expected_crc == _parsed_msg.crc16) {
// successfully received a message, do something with it
process_packet();
#if AP_MOUNT_SIYI_DEBUG
} else {
debug("crc expected:%x got:%x", (unsigned)expected_crc, (unsigned)_parsed_msg.crc16);
#endif
}
reset_parser = true;
break;
}
// handle reset of parser
if (reset_parser) {
_parsed_msg.state = ParseState::WAITING_FOR_HEADER_LOW;
_msg_buff_len = 0;
reset_parser = false;
}
}
}
// process successfully decoded packets held in the _parsed_msg structure
void AP_Mount_Siyi::process_packet()
{
#if AP_MOUNT_SIYI_DEBUG
// flag to warn of unexpected data buffer length
bool unexpected_len = false;
#endif
// process packet depending upon command id
switch ((SiyiCommandId)_parsed_msg.command_id) {
case SiyiCommandId::ACQUIRE_FIRMWARE_VERSION: {
if (_parsed_msg.data_bytes_received != 12 && // ZR10 firmware version reply is 12bytes
_parsed_msg.data_bytes_received != 8) { // A8 firmware version reply is 8 bytes
#if AP_MOUNT_SIYI_DEBUG
unexpected_len = true;
#endif
break;
}
// consume and display camera firmware version
_fw_version = {};
_fw_version.camera.major = _msg_buff[_msg_buff_data_start+2]; // firmware major version
_fw_version.camera.minor = _msg_buff[_msg_buff_data_start+1]; // firmware minor version
_fw_version.camera.patch = _msg_buff[_msg_buff_data_start+0]; // firmware revision (aka patch)
_fw_version.gimbal.major = _msg_buff[_msg_buff_data_start+6]; // firmware major version
_fw_version.gimbal.minor = _msg_buff[_msg_buff_data_start+5]; // firmware minor version
_fw_version.gimbal.patch = _msg_buff[_msg_buff_data_start+4]; // firmware revision (aka patch)
// camera firmware version may be all zero soon after startup. giveup and try again later
if (_fw_version.camera.major == 0 && _fw_version.camera.minor == 0 && _fw_version.camera.patch == 0) {
break;
}
_fw_version.received = true;
// display camera info to user
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Mount: Siyi camera fw v%u.%u.%u",
_fw_version.camera.major,
_fw_version.camera.minor,
_fw_version.camera.patch);
// display gimbal info to user
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Mount: Siyi gimbal fw v%u.%u.%u",
_fw_version.gimbal.major,
_fw_version.gimbal.minor,
_fw_version.gimbal.patch);
// display zoom firmware version for those that have it
if (_parsed_msg.data_bytes_received >= 12) {
_fw_version.zoom.major = _msg_buff[_msg_buff_data_start+10];
_fw_version.zoom.minor = _msg_buff[_msg_buff_data_start+ 9];
_fw_version.zoom.patch = _msg_buff[_msg_buff_data_start+ 8];
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Mount: Siyi zoom fw v%u.%u.%u",
_fw_version.zoom.major,
_fw_version.zoom.minor,
_fw_version.zoom.patch);
}
// report to the user if gimbal firmware is not up-to-date
check_firmware_version();
break;
}
case SiyiCommandId::HARDWARE_ID: {
// lookup first two digits of hardware id
const uint8_t hwid0 = _msg_buff[_msg_buff_data_start];
const uint8_t hwid1 = _msg_buff[_msg_buff_data_start+1];
for (uint8_t i=1; i<ARRAY_SIZE(hardware_lookup_table); i++) {
if (hwid0 == hardware_lookup_table[i].hwid[0] && hwid1 == hardware_lookup_table[i].hwid[1]) {
_hardware_model = (HardwareModel)i;
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Mount: Siyi %s", get_model_name());
}
}
_got_hardware_id = true;
break;
}
case SiyiCommandId::AUTO_FOCUS:
#if AP_MOUNT_SIYI_DEBUG
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
debug("AutoFocus:%u", (unsigned)_msg_buff[_msg_buff_data_start]);
#endif
break;
case SiyiCommandId::MANUAL_ZOOM_AND_AUTO_FOCUS: {
if (_parsed_msg.data_bytes_received != 2) {
#if AP_MOUNT_SIYI_DEBUG
unexpected_len = true;
#endif
break;
}
_zoom_mult = UINT16_VALUE(_msg_buff[_msg_buff_data_start+1], _msg_buff[_msg_buff_data_start]) * 0.1;
debug("ZoomMult:%4.1f", (double)_zoom_mult);
break;
}
case SiyiCommandId::MANUAL_FOCUS:
#if AP_MOUNT_SIYI_DEBUG
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
debug("ManualFocus:%u", (unsigned)_msg_buff[_msg_buff_data_start]);
#endif
break;
case SiyiCommandId::GIMBAL_ROTATION:
#if AP_MOUNT_SIYI_DEBUG
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
debug("GimbRot:%u", (unsigned)_msg_buff[_msg_buff_data_start]);
#endif
break;
case SiyiCommandId::CENTER:
#if AP_MOUNT_SIYI_DEBUG
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
debug("Center:%u", (unsigned)_msg_buff[_msg_buff_data_start]);
#endif
break;
case SiyiCommandId::ACQUIRE_GIMBAL_CONFIG_INFO: {
const RecordingStatus prev_record_status = _config_info.record_status;
// Update Gimbal Config Information
size_t config_sz = MIN(_parsed_msg.data_bytes_received, sizeof(_config_info));
memcpy(&_config_info, &_msg_buff[_msg_buff_data_start], config_sz);
// Alert user if recording status changed
if (prev_record_status != _config_info.record_status) {
const char * msg = "?";
MAV_SEVERITY sev = MAV_SEVERITY_INFO;
switch (_config_info.record_status) {
case RecordingStatus::OFF:
msg = "OFF";
break;
case RecordingStatus::ON:
msg = "ON";
break;
case RecordingStatus::NO_CARD:
msg = "NO CARD!";
sev = MAV_SEVERITY_WARNING;
break;
case RecordingStatus::DATA_LOSS:
msg = "DATA LOSS!";
sev = MAV_SEVERITY_WARNING;
break;
}
(void)msg; // in case GCS_SEND_TEXT not available
(void)sev; // in case GCS_SEND_TEXT not available
GCS_SEND_TEXT(sev, "Siyi: recording %s", msg);
}
debug(
"GimConf hdr:%u rec:%u foll:%u mntdir:%u vid:%u",
(uint8_t)_config_info.hdr_status,
(uint8_t)_config_info.record_status,
(uint8_t)_config_info.motion_mode,
(uint8_t)_config_info.mounting_dir,
(uint8_t)_config_info.video_mode
);
break;
}
case SiyiCommandId::FUNCTION_FEEDBACK_INFO: {
if (_parsed_msg.data_bytes_received != 1) {
#if AP_MOUNT_SIYI_DEBUG
unexpected_len = true;
#endif
break;
}
const uint8_t func_feedback_info = _msg_buff[_msg_buff_data_start];
const char* err_prefix = "Mount: Siyi";
(void)err_prefix; // in case !HAL_GCS_ENABLED
switch ((FunctionFeedbackInfo)func_feedback_info) {
case FunctionFeedbackInfo::SUCCESS:
debug("FnFeedB success");
break;
case FunctionFeedbackInfo::FAILED_TO_TAKE_PHOTO:
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s failed to take picture", err_prefix);
break;
case FunctionFeedbackInfo::HDR_ON:
debug("HDR on");
break;
case FunctionFeedbackInfo::HDR_OFF:
debug("HDR off");
break;
case FunctionFeedbackInfo::FAILED_TO_RECORD_VIDEO:
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "%s failed to record video", err_prefix);
break;
default:
debug("FnFeedB unexpected val:%u", (unsigned)func_feedback_info);
}
break;
}
case SiyiCommandId::PHOTO:
// no ack should ever be sent by the gimbal
break;
case SiyiCommandId::ACQUIRE_GIMBAL_ATTITUDE: {
if (_parsed_msg.data_bytes_received != 12) {
#if AP_MOUNT_SIYI_DEBUG
unexpected_len = true;
#endif
break;
}
_last_current_angle_rad_ms = AP_HAL::millis();
_current_angle_rad.z = -radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+1], _msg_buff[_msg_buff_data_start]) * 0.1); // yaw angle
_current_angle_rad.y = radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+3], _msg_buff[_msg_buff_data_start+2]) * 0.1); // pitch angle
_current_angle_rad.x = radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+5], _msg_buff[_msg_buff_data_start+4]) * 0.1); // roll angle
_current_rates_rads.z = -radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+7], _msg_buff[_msg_buff_data_start+6]) * 0.1); // yaw rate
_current_rates_rads.y = radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+9], _msg_buff[_msg_buff_data_start+8]) * 0.1); // pitch rate
_current_rates_rads.x = radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+11], _msg_buff[_msg_buff_data_start+10]) * 0.1); // roll rate
break;
}
#if AP_MOUNT_SEND_THERMAL_RANGE_ENABLED
case SiyiCommandId::GET_TEMP_FULL_IMAGE: {
if (_parsed_msg.data_bytes_received != 12) {
#if AP_MOUNT_SIYI_DEBUG
unexpected_len = true;
#endif
break;
}
_thermal.last_update_ms = AP_HAL::millis();
_thermal.max_C = (int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+1], _msg_buff[_msg_buff_data_start]) * 0.01;
_thermal.min_C = (int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+3], _msg_buff[_msg_buff_data_start+2]) * 0.01;
_thermal.max_pos.x = UINT16_VALUE(_msg_buff[_msg_buff_data_start+5], _msg_buff[_msg_buff_data_start+4]);
_thermal.max_pos.y = UINT16_VALUE(_msg_buff[_msg_buff_data_start+7], _msg_buff[_msg_buff_data_start+6]);
_thermal.min_pos.x = UINT16_VALUE(_msg_buff[_msg_buff_data_start+9], _msg_buff[_msg_buff_data_start+8]);
_thermal.min_pos.y = UINT16_VALUE(_msg_buff[_msg_buff_data_start+11], _msg_buff[_msg_buff_data_start+10]);
break;
}
#endif
case SiyiCommandId::READ_RANGEFINDER: {
_rangefinder_dist_m = UINT16_VALUE(_msg_buff[_msg_buff_data_start+1], _msg_buff[_msg_buff_data_start]);
_last_rangefinder_dist_ms = AP_HAL::millis();
break;
}
default:
debug("Unhandled CmdId:%u", (unsigned)_parsed_msg.command_id);
break;
}
#if AP_MOUNT_SIYI_DEBUG
// handle unexpected data buffer length
if (unexpected_len) {
debug("CmdId:%u unexpected len:%u", (unsigned)_parsed_msg.command_id, (unsigned)_parsed_msg.data_bytes_received);
}
#endif
}
// methods to send commands to gimbal
// returns true on success, false if outgoing serial buffer is full
bool AP_Mount_Siyi::send_packet(SiyiCommandId cmd_id, const uint8_t* databuff, uint8_t databuff_len)
{
if (!_initialised) {
return false;
}
// calculate and sanity check packet size
const uint16_t packet_size = AP_MOUNT_SIYI_PACKETLEN_MIN + databuff_len;
if (packet_size > AP_MOUNT_SIYI_PACKETLEN_MAX) {
debug("send_packet data buff too large");
return false;
}
// check for sufficient space in outgoing buffer
if (_uart->txspace() < packet_size) {
return false;
}
// buffer for holding outgoing packet
uint8_t send_buff[packet_size];
uint8_t send_buff_ofs = 0;
// packet header
send_buff[send_buff_ofs++] = AP_MOUNT_SIYI_HEADER1;
send_buff[send_buff_ofs++] = AP_MOUNT_SIYI_HEADER2;
// CTRL. Always request ACK
send_buff[send_buff_ofs++] = 1;
// Data_len. protocol supports uint16_t but messages are never longer than 22 bytes
send_buff[send_buff_ofs++] = databuff_len;
send_buff[send_buff_ofs++] = 0;
// SEQ (sequence)
send_buff[send_buff_ofs++] = LOWBYTE(_last_seq);
send_buff[send_buff_ofs++] = HIGHBYTE(_last_seq++);
// CMD_ID
send_buff[send_buff_ofs++] = (uint8_t)cmd_id;
// DATA
if (databuff_len != 0) {
memcpy(&send_buff[send_buff_ofs], databuff, databuff_len);
send_buff_ofs += databuff_len;
}
// CRC16
const uint16_t crc = crc16_ccitt(send_buff, send_buff_ofs, 0);
send_buff[send_buff_ofs++] = LOWBYTE(crc);
send_buff[send_buff_ofs++] = HIGHBYTE(crc);
// send packet
_uart->write(send_buff, send_buff_ofs);
return true;
}
// send a packet with a single data byte to gimbal
// returns true on success, false if outgoing serial buffer is full
bool AP_Mount_Siyi::send_1byte_packet(SiyiCommandId cmd_id, uint8_t data_byte)
{
return send_packet(cmd_id, &data_byte, 1);
}
// rotate gimbal. pitch_rate and yaw_rate are scalars in the range -100 ~ +100
// yaw_is_ef should be true if gimbal should maintain an earth-frame target (aka lock)
void AP_Mount_Siyi::rotate_gimbal(int8_t pitch_scalar, int8_t yaw_scalar, bool yaw_is_ef)
{
// send lock/follow value
const GimbalMotionMode mode = yaw_is_ef ? GimbalMotionMode::LOCK : GimbalMotionMode::FOLLOW;
if (!set_motion_mode(mode)) {
// couldn't set mode, so don't send rotation
return;
}
const uint8_t yaw_and_pitch_rates[] {(uint8_t)yaw_scalar, (uint8_t)pitch_scalar};
send_packet(SiyiCommandId::GIMBAL_ROTATION, yaw_and_pitch_rates, ARRAY_SIZE(yaw_and_pitch_rates));
}
// Set gimbal's motion mode if it has changed. Use force=true to always send.
// FOLLOW: roll and pitch are in earth-frame, yaw is in body-frame
// LOCK: roll, pitch and yaw are all in earth-frame
// FPV: roll, pitch and yaw are all in body-frame
// Returns true if mode successfully sent to Gimbal
bool AP_Mount_Siyi::set_motion_mode(const GimbalMotionMode mode, const bool force)
{
if (!force && (mode == _config_info.motion_mode)) {
// we're already in the right mode...
return true;
}
PhotoFunction data = PhotoFunction::LOCK_MODE;
switch (mode) {
case GimbalMotionMode::LOCK: data = PhotoFunction::LOCK_MODE; break;
case GimbalMotionMode::FOLLOW: data = PhotoFunction::FOLLOW_MODE; break;
case GimbalMotionMode::FPV: data = PhotoFunction::FPV_MODE; break;
}
bool sent = send_1byte_packet(SiyiCommandId::PHOTO, (uint8_t)data);
if (sent) {
// assume the mode is set correctly until told otherwise
_config_info.motion_mode = mode;
request_configuration();
}
return sent;
}
// send target pitch and yaw rates to gimbal
// yaw_is_ef should be true if yaw_rads target is an earth frame rate, false if body_frame
void AP_Mount_Siyi::send_target_rates(float pitch_rads, float yaw_rads, bool yaw_is_ef)
{
const float pitch_rate_scalar = constrain_float(100.0 * pitch_rads / AP_MOUNT_SIYI_RATE_MAX_RADS, -100, 100);
const float yaw_rate_scalar = constrain_float(100.0 * yaw_rads / AP_MOUNT_SIYI_RATE_MAX_RADS, -100, 100);
rotate_gimbal(pitch_rate_scalar, yaw_rate_scalar, yaw_is_ef);
}
// send target pitch and yaw angles to gimbal
// yaw_is_ef should be true if yaw_rad target is an earth frame angle, false if body_frame
void AP_Mount_Siyi::send_target_angles(float pitch_rad, float yaw_rad, bool yaw_is_ef)
{
// stop gimbal if no recent actual angles
uint32_t now_ms = AP_HAL::millis();
if (now_ms - _last_current_angle_rad_ms >= 200) {
rotate_gimbal(0, 0, false);
return;
}
// if gimbal mounting direction is 2 i.e. upside down, then transform the angles
Vector3f current_angle_transformed = _current_angle_rad;
if (_config_info.mounting_dir == GimbalMountingDirection::UPSIDE_DOWN) {
current_angle_transformed.y = -wrap_PI(_current_angle_rad.y + M_PI);
current_angle_transformed.z = -_current_angle_rad.z;
}
// use simple P controller to convert pitch angle error (in radians) to a target rate scalar (-100 to +100)
const float pitch_err_rad = (pitch_rad - current_angle_transformed.y);
const float pitch_rate_scalar = constrain_float(100.0 * pitch_err_rad * AP_MOUNT_SIYI_PITCH_P / AP_MOUNT_SIYI_RATE_MAX_RADS, -100, 100);
// convert yaw angle to body-frame
float yaw_bf_rad = yaw_is_ef ? wrap_PI(yaw_rad - AP::ahrs().get_yaw()) : yaw_rad;
// enforce body-frame yaw angle limits. If beyond limits always use body-frame control
const float yaw_bf_min = radians(_params.yaw_angle_min);
const float yaw_bf_max = radians(_params.yaw_angle_max);
if (yaw_bf_rad < yaw_bf_min || yaw_bf_rad > yaw_bf_max) {
yaw_bf_rad = constrain_float(yaw_bf_rad, yaw_bf_min, yaw_bf_max);
yaw_is_ef = false;
}
// use simple P controller to convert yaw angle error to a target rate scalar (-100 to +100)
const float yaw_err_rad = (yaw_bf_rad - current_angle_transformed.z);
const float yaw_rate_scalar = constrain_float(100.0 * yaw_err_rad * AP_MOUNT_SIYI_YAW_P / AP_MOUNT_SIYI_RATE_MAX_RADS, -100, 100);
// rotate gimbal. pitch_rate and yaw_rate are scalars in the range -100 ~ +100
rotate_gimbal(pitch_rate_scalar, yaw_rate_scalar, yaw_is_ef);
}
// take a picture. returns true on success
bool AP_Mount_Siyi::take_picture()
{
return send_1byte_packet(SiyiCommandId::PHOTO, (uint8_t)PhotoFunction::TAKE_PICTURE);
}
// start or stop video recording. returns true on success
// set start_recording = true to start record, false to stop recording
bool AP_Mount_Siyi::record_video(bool start_recording)
{
// exit immediately if not initialised to reduce mismatch
// between internal and actual state of recording
if (!_initialised) {
return false;
}
bool success = true;
bool send_toggle = false;
if (start_recording) {
switch (_config_info.record_status) {
case RecordingStatus::ON:
// already recording...
break;
// assume that DATA_LOSS is the same as OFF
case RecordingStatus::DATA_LOSS:
case RecordingStatus::OFF:
send_toggle = true;
break;
case RecordingStatus::NO_CARD:
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Siyi: can't start recording: No Card");
success = false;
break;
}
} else {
switch (_config_info.record_status) {
case RecordingStatus::ON:
send_toggle = true;
break;
// assume that DATA_LOSS is the same as OFF
case RecordingStatus::DATA_LOSS:
case RecordingStatus::OFF:
case RecordingStatus::NO_CARD:
// already off...
break;
}
}
if (send_toggle) {
success = send_1byte_packet(SiyiCommandId::PHOTO, (uint8_t)PhotoFunction::RECORD_VIDEO_TOGGLE);
}
// request recording state update from gimbal
request_configuration();
return success;
}
// send zoom rate command to camera. zoom out = -1, hold = 0, zoom in = 1
bool AP_Mount_Siyi::send_zoom_rate(float zoom_value)
{
uint8_t zoom_step = 0;
if (zoom_value > 0) {
// zoom in
zoom_step = 1;
}
if (zoom_value < 0) {
// zoom out. Siyi API specifies -1 should be sent as 255
zoom_step = UINT8_MAX;
}
return send_1byte_packet(SiyiCommandId::MANUAL_ZOOM_AND_AUTO_FOCUS, zoom_step);
}
// send zoom multiple command to camera. e.g. 1x, 10x, 30x
// only works on ZR10 and ZR30
bool AP_Mount_Siyi::send_zoom_mult(float zoom_mult)
{
// separate zoom_mult into integral and fractional parts
float intpart;
uint8_t fracpart = (uint8_t)constrain_int16(modf(zoom_mult, &intpart) * 10, 0, UINT8_MAX);
// create and send 2 byte array
const uint8_t zoom_mult_data[] {(uint8_t)(intpart), fracpart};
return send_packet(SiyiCommandId::ABSOLUTE_ZOOM, zoom_mult_data, ARRAY_SIZE(zoom_mult_data));
}
// get zoom multiple max
float AP_Mount_Siyi::get_zoom_mult_max() const
{
switch (_hardware_model) {
case HardwareModel::UNKNOWN:
return 0;
case HardwareModel::A2:
case HardwareModel::A8:
case HardwareModel::ZT6:
// a8, zt6 have 6x digital zoom
return 6;
case HardwareModel::ZR10:
case HardwareModel::ZR30:
case HardwareModel::ZT30:
// 30x hybrid zoom (optical + digital)
return 30;
}
return 0;
}
// set zoom specified as a rate or percentage
bool AP_Mount_Siyi::set_zoom(ZoomType zoom_type, float zoom_value)
{
switch (zoom_type) {
case ZoomType::RATE:
if (send_zoom_rate(zoom_value)) {
_zoom_type = zoom_type;
_zoom_rate_target = zoom_value;
return true;
}
return false;
case ZoomType::PCT: {
// absolute zoom
float zoom_mult_max = get_zoom_mult_max();
if (is_positive(zoom_mult_max)) {
// convert zoom percentage (0~100) to target zoom multiple (e.g. 0~6x or 0~30x)
const float zoom_mult = linear_interpolate(1, zoom_mult_max, zoom_value, 0, 100);
if (send_zoom_mult(zoom_mult)) {
_zoom_type = zoom_type;
return true;
}
return false;
}
return false;
}
}
// unsupported zoom type
return false;
}
// update zoom controller
void AP_Mount_Siyi::update_zoom_control()
{
if (_zoom_type == ZoomType::RATE) {
// limit updates to 1hz
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - _last_zoom_control_ms < 1000) {
return;
}
_last_zoom_control_ms = now_ms;
// only send zoom rate target if it's non-zero because if zero it has already been sent
// and sending zero rate also triggers autofocus
if (!is_zero(_zoom_rate_target)) {
send_zoom_rate(_zoom_rate_target);
}
}
}
// set focus specified as rate, percentage or auto
// focus in = -1, focus hold = 0, focus out = 1
SetFocusResult AP_Mount_Siyi::set_focus(FocusType focus_type, float focus_value)
{
switch (focus_type) {
case FocusType::RATE: {
uint8_t focus_step = 0;
if (focus_value > 0) {
focus_step = 1;
} else if (focus_value < 0) {
// Siyi API specifies -1 should be sent as 255
focus_step = UINT8_MAX;
}
if (!send_1byte_packet(SiyiCommandId::MANUAL_FOCUS, (uint8_t)focus_step)) {
return SetFocusResult::FAILED;
}
return SetFocusResult::ACCEPTED;
}
case FocusType::PCT:
// not supported
return SetFocusResult::INVALID_PARAMETERS;
case FocusType::AUTO:
if (!send_1byte_packet(SiyiCommandId::AUTO_FOCUS, 1)) {
return SetFocusResult::FAILED;
}
return SetFocusResult::ACCEPTED;
}
// unsupported focus type
return SetFocusResult::INVALID_PARAMETERS;
}
// set camera lens as a value from 0 to 8
bool AP_Mount_Siyi::set_lens(uint8_t lens)
{
CameraImageType selected_lens;
switch (_hardware_model) {
case HardwareModel::ZT30: {
// maps lens to siyi camera image type so that lens of 0, 1, 2 are more useful
static const CameraImageType cam_image_type_table[] {
CameraImageType::MAIN_ZOOM_SUB_THERMAL, // 3
CameraImageType::MAIN_WIDEANGLE_SUB_THERMAL, // 5
CameraImageType::MAIN_THERMAL_SUB_ZOOM, // 7
CameraImageType::MAIN_PIP_ZOOM_THERMAL_SUB_WIDEANGLE, // 0
CameraImageType::MAIN_PIP_WIDEANGLE_THERMAL_SUB_ZOOM, // 1
CameraImageType::MAIN_PIP_ZOOM_WIDEANGLE_SUB_THERMAL, // 2
CameraImageType::MAIN_ZOOM_SUB_WIDEANGLE, // 4
CameraImageType::MAIN_WIDEANGLE_SUB_ZOOM, // 6
CameraImageType::MAIN_THERMAL_SUB_WIDEANGLE, // 8
};
// sanity check lens values
if (lens >= ARRAY_SIZE(cam_image_type_table)) {
return false;
}
selected_lens = cam_image_type_table[lens];
break;
}
case HardwareModel::ZT6: {
// maps lens to siyi camera image type so that lens of 0, 1, 2 are more useful
static const CameraImageType cam_image_type_table[] {
CameraImageType::MAIN_ZOOM_SUB_THERMAL, // 3
CameraImageType::MAIN_THERMAL_SUB_ZOOM, // 7
CameraImageType::MAIN_PIP_ZOOM_THERMAL_SUB_WIDEANGLE, // 0
};
// sanity check lens values
if (lens >= ARRAY_SIZE(cam_image_type_table)) {
return false;
}
selected_lens = cam_image_type_table[lens];
break;
}
default:
// set lens not supported on this camera
return false;
}
// send desired image type to camera
return send_1byte_packet(SiyiCommandId::SET_CAMERA_IMAGE_TYPE, (uint8_t)selected_lens);
}
// set_camera_source is functionally the same as set_lens except primary and secondary lenses are specified by type
// primary and secondary sources use the AP_Camera::CameraSource enum cast to uint8_t
bool AP_Mount_Siyi::set_camera_source(uint8_t primary_source, uint8_t secondary_source)
{
// only supported on ZT30. sanity check lens values
if (_hardware_model != HardwareModel::ZT30) {
return false;
}
// maps primary and secondary source to siyi camera image type
CameraImageType cam_image_type;
switch (primary_source) {
case 0: // Default (RGB)
FALLTHROUGH;
case 1: // RGB
switch (secondary_source) {
case 0: // RGB + Default (None)
cam_image_type = CameraImageType::MAIN_ZOOM_SUB_THERMAL; // 3
break;
case 2: // PIP RGB+IR
cam_image_type = CameraImageType::MAIN_PIP_ZOOM_THERMAL_SUB_WIDEANGLE; // 0
break;
case 4: // PIP RGB+RGB_WIDEANGLE
cam_image_type = CameraImageType::MAIN_PIP_ZOOM_WIDEANGLE_SUB_THERMAL; // 2
break;
default:
return false;
}
break;
case 2: // IR
switch (secondary_source) {
case 0: // IR + Default (None)
cam_image_type = CameraImageType::MAIN_THERMAL_SUB_ZOOM; // 7
break;
default:
return false;
}
break;
case 4: // RGB_WIDEANGLE
switch (secondary_source) {
case 0: // RGB_WIDEANGLE + Default (None)
cam_image_type = CameraImageType::MAIN_WIDEANGLE_SUB_THERMAL; // 5
break;
case 2: // PIP RGB_WIDEANGLE+IR
cam_image_type = CameraImageType::MAIN_PIP_WIDEANGLE_THERMAL_SUB_ZOOM; // 1
break;
default:
return false;
}
break;
default:
return false;
}
// send desired image type to camera
return send_1byte_packet(SiyiCommandId::SET_CAMERA_IMAGE_TYPE, (uint8_t)cam_image_type);
}
// send camera information message to GCS
void AP_Mount_Siyi::send_camera_information(mavlink_channel_t chan) const
{
// exit immediately if not initialised
if (!_initialised || !_fw_version.received) {
return;
}
static const uint8_t vendor_name[32] = "Siyi";
static uint8_t model_name[32] {};
const uint32_t fw_version = _fw_version.camera.major | (_fw_version.camera.minor << 8) | (_fw_version.camera.patch << 16);
const char cam_definition_uri[140] {};
// copy model name
strncpy((char *)model_name, get_model_name(), sizeof(model_name)-1);
// focal length
// To-Do: check these values are correct for A2, ZR30, ZT30
float focal_length_mm = 0;
switch (_hardware_model) {
case HardwareModel::UNKNOWN:
case HardwareModel::A2:
case HardwareModel::A8:
case HardwareModel::ZT6:
focal_length_mm = 21;
break;
case HardwareModel::ZR10:
case HardwareModel::ZR30:
case HardwareModel::ZT30:
// focal length range from 5.15 ~ 47.38
focal_length_mm = 5.15;
break;
}
// capability flags
const uint32_t flags = CAMERA_CAP_FLAGS_CAPTURE_VIDEO |
CAMERA_CAP_FLAGS_CAPTURE_IMAGE |
CAMERA_CAP_FLAGS_HAS_BASIC_ZOOM |
CAMERA_CAP_FLAGS_HAS_BASIC_FOCUS;
// send CAMERA_INFORMATION message
mavlink_msg_camera_information_send(
chan,
AP_HAL::millis(), // time_boot_ms
vendor_name, // vendor_name uint8_t[32]
model_name, // model_name uint8_t[32]
fw_version, // firmware version uint32_t
focal_length_mm, // focal_length float (mm)
NaNf, // sensor_size_h float (mm)
NaNf, // sensor_size_v float (mm)
0, // resolution_h uint16_t (pix)
0, // resolution_v uint16_t (pix)
0, // lens_id uint8_t
flags, // flags uint32_t (CAMERA_CAP_FLAGS)
0, // cam_definition_version uint16_t
cam_definition_uri, // cam_definition_uri char[140]
_instance + 1); // gimbal_device_id uint8_t
}
// send camera settings message to GCS
void AP_Mount_Siyi::send_camera_settings(mavlink_channel_t chan) const
{
const uint8_t mode_id = (_config_info.record_status == RecordingStatus::ON) ? CAMERA_MODE_VIDEO : CAMERA_MODE_IMAGE;
const float zoom_mult_max = get_zoom_mult_max();
float zoom_pct = 0.0;
if (is_positive(zoom_mult_max)) {
zoom_pct = linear_interpolate(0, 100, _zoom_mult, 1.0, zoom_mult_max);
}
// send CAMERA_SETTINGS message
mavlink_msg_camera_settings_send(
chan,
AP_HAL::millis(), // time_boot_ms
mode_id, // camera mode (0:image, 1:video, 2:image survey)
zoom_pct, // zoomLevel float, percentage from 0 to 100, NaN if unknown
NaNf); // focusLevel float, percentage from 0 to 100, NaN if unknown
}
#if AP_MOUNT_SEND_THERMAL_RANGE_ENABLED
// send camera thermal range message to GCS
void AP_Mount_Siyi::send_camera_thermal_range(mavlink_channel_t chan) const
{
const uint32_t now_ms = AP_HAL::millis();
bool timeout = now_ms - _thermal.last_update_ms > AP_MOUNT_SIYI_THERM_TIMEOUT_MS;
// send CAMERA_THERMAL_RANGE message
mavlink_msg_camera_thermal_range_send(
chan,
now_ms, // time_boot_ms
_instance + 1, // video stream id (assume one-to-one mapping with camera id)
_instance + 1, // camera device id
timeout ? NaNf : _thermal.max_C, // max in degC
timeout ? NaNf : _thermal.max_pos.x, // max x position
timeout ? NaNf : _thermal.max_pos.y, // max y position
timeout ? NaNf : _thermal.min_C, // min in degC
timeout ? NaNf : _thermal.min_pos.x, // min x position
timeout ? NaNf : _thermal.min_pos.y);// min y position
}
#endif
// change camera settings not normally used by autopilot
// THERMAL_PALETTE: 0:WhiteHot, 2:Sepia, 3:IronBow, 4:Rainbow, 5:Night, 6:Aurora, 7:RedHot, 8:Jungle, 9:Medical, 10:BlackHot, 11:GloryHot
// THERMAL_GAIN: 0:Low gain (50C ~ 550C), 1:High gain (-20C ~ 150C)
// THERMAL_RAW_DATA: 0:Disable Raw Data (30fps), 1:Enable Raw Data (25fps)
bool AP_Mount_Siyi::change_setting(CameraSetting setting, float value)
{
switch (setting) {
case CameraSetting::THERMAL_PALETTE:
return send_1byte_packet(SiyiCommandId::SET_THERMAL_PALETTE, (uint8_t)value);
case CameraSetting::THERMAL_GAIN:
return send_1byte_packet(SiyiCommandId::SET_THERMAL_GAIN, (uint8_t)value);
case CameraSetting::THERMAL_RAW_DATA:
return send_1byte_packet(SiyiCommandId::SET_THERMAL_RAW_DATA, (uint8_t)value);
}
// invalid setting so return false
return false;
}
// get model name string. returns "Unknown" if hardware model is not yet known
const char* AP_Mount_Siyi::get_model_name() const
{
uint8_t model_idx = (uint8_t)_hardware_model;
if (model_idx < ARRAY_SIZE(hardware_lookup_table)) {
return hardware_lookup_table[model_idx].model_name;
}
return hardware_lookup_table[0].model_name;
}
// get rangefinder distance. Returns true on success
bool AP_Mount_Siyi::get_rangefinder_distance(float& distance_m) const
{
// only supported on ZT30
if (_hardware_model != HardwareModel::ZT30) {
return false;
}
// unhealthy if distance not received recently
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - _last_rangefinder_dist_ms > AP_MOUNT_SIYI_TIMEOUT_MS) {
return false;
}
distance_m = _rangefinder_dist_m;
return true;
}
// Checks that the firmware version on the Gimbal meets the minimum supported version.
void AP_Mount_Siyi::check_firmware_version() const
{
if (!_fw_version.received) {
debug("Can't check firmware if we haven't received it...");
return;
}
if (!_got_hardware_id) {
debug("Can't check firmware without Hardware ID!");
return;
}
FirmwareVersion minimum_ver {};
switch (_hardware_model) {
case HardwareModel::A8:
minimum_ver.camera.major = 0;
minimum_ver.camera.minor = 2;
minimum_ver.camera.patch = 1;
break;
case HardwareModel::A2:
case HardwareModel::ZR10:
case HardwareModel::ZR30:
case HardwareModel::ZT6:
case HardwareModel::ZT30:
// TBD
break;
case HardwareModel::UNKNOWN:
debug("Can't check FW on unknown hardware model!");
return;
}
const uint32_t minimum_camera_val = (minimum_ver.camera.major << 16) + (minimum_ver.camera.minor << 8) + minimum_ver.camera.patch;
const uint32_t firmware_camera_val = (_fw_version.camera.major << 16) + (_fw_version.camera.minor << 8) + _fw_version.camera.patch;
const bool is_camera_supported = firmware_camera_val >= minimum_camera_val;
if (!is_camera_supported) {
GCS_SEND_TEXT(
MAV_SEVERITY_WARNING,
"Mount: Siyi running old camera fw (need v%u.%u.%u)",
minimum_ver.camera.major, minimum_ver.camera.minor, minimum_ver.camera.patch
);
}
}
#if AP_MOUNT_SEND_THERMAL_RANGE_ENABLED
// get thermal min/max if available at 5hz
void AP_Mount_Siyi::request_thermal_minmax()
{
// only supported on ZT6 and ZT30
if (_hardware_model != HardwareModel::ZT6 &&
_hardware_model != HardwareModel::ZT30) {
return;
}
// check for timeout
uint32_t now_ms = AP_HAL::millis();
if ((now_ms - _thermal.last_update_ms > AP_MOUNT_SIYI_THERM_TIMEOUT_MS) &&
(now_ms - _thermal.last_req_ms > AP_MOUNT_SIYI_THERM_TIMEOUT_MS)) {
// request thermal min/max at 5hz
send_1byte_packet(SiyiCommandId::GET_TEMP_FULL_IMAGE, 2);
_thermal.last_req_ms = now_ms;
}
}
#endif
/*
send ArduPilot attitude and position to gimbal
*/
void AP_Mount_Siyi::send_attitude_position(void)
{
const auto &ahrs = AP::ahrs();
struct {
uint32_t time_boot_ms;
float roll, pitch, yaw;
float rollspeed, pitchspeed, yawspeed;
} attitude;
// get attitude as euler 321
const auto &gyro = ahrs.get_gyro();
const uint32_t now_ms = AP_HAL::millis();
attitude.time_boot_ms = now_ms;
attitude.roll = ahrs.get_roll();
attitude.pitch = ahrs.get_pitch();
attitude.yaw = ahrs.get_yaw();
attitude.rollspeed = gyro.x;
attitude.pitchspeed = gyro.y;
attitude.yawspeed = gyro.z;
send_packet(SiyiCommandId::EXTERNAL_ATTITUDE, (const uint8_t *)&attitude, sizeof(attitude));
// send location and velocity
struct {
uint32_t time_boot_ms;
int32_t lat, lon;
int32_t alt_msl, alt_ellipsoid;
Vector3l velocity_ned_int32;
} position;
Location loc;
Vector3f velocity_ned;
float undulation = 0;
if (!ahrs.get_location(loc) ||
!ahrs.get_velocity_NED(velocity_ned)) {
return;
}
AP::gps().get_undulation(undulation);
position.time_boot_ms = now_ms;
position.lat = loc.lat;
position.lon = loc.lng;
position.alt_msl = loc.alt;
position.alt_ellipsoid = position.alt_msl - undulation*100;
// convert velocity to int32 and scale to mm/s
position.velocity_ned_int32.x = velocity_ned.x * 1000;
position.velocity_ned_int32.y = velocity_ned.y * 1000;
position.velocity_ned_int32.z = velocity_ned.z * 1000;
send_packet(SiyiCommandId::POSITION_DATA, (const uint8_t *)&position, sizeof(position));
}
#endif // HAL_MOUNT_SIYI_ENABLED