mirror of https://github.com/ArduPilot/ardupilot
293 lines
7.7 KiB
C++
293 lines
7.7 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Copyright 2010 Michael Smith, all rights reserved.
|
|
|
|
// Inspired by:
|
|
/****************************************
|
|
* 3D Vector Classes
|
|
* By Bill Perone (billperone@yahoo.com)
|
|
*/
|
|
|
|
//
|
|
// 3x3 matrix implementation.
|
|
//
|
|
// Note that the matrix is organised in row-normal form (the same as
|
|
// applies to array indexing).
|
|
//
|
|
// In addition to the template, this header defines the following types:
|
|
//
|
|
// Matrix3i 3x3 matrix of signed integers
|
|
// Matrix3ui 3x3 matrix of unsigned integers
|
|
// Matrix3l 3x3 matrix of signed longs
|
|
// Matrix3ul 3x3 matrix of unsigned longs
|
|
// Matrix3f 3x3 matrix of signed floats
|
|
//
|
|
#pragma once
|
|
|
|
#include "ftype.h"
|
|
|
|
#include "vector3.h"
|
|
#include "vector2.h"
|
|
|
|
template <typename T>
|
|
class Vector3;
|
|
|
|
// 3x3 matrix with elements of type T
|
|
template <typename T>
|
|
class Matrix3 {
|
|
public:
|
|
|
|
// Vectors comprising the rows of the matrix
|
|
Vector3<T> a, b, c;
|
|
|
|
// trivial ctor
|
|
// note that the Vector3 ctor will zero the vector elements
|
|
constexpr Matrix3() {}
|
|
|
|
// setting ctor
|
|
constexpr Matrix3(const Vector3<T> &a0, const Vector3<T> &b0, const Vector3<T> &c0)
|
|
: a(a0)
|
|
, b(b0)
|
|
, c(c0) {}
|
|
|
|
// setting ctor
|
|
constexpr Matrix3(const T ax, const T ay, const T az,
|
|
const T bx, const T by, const T bz,
|
|
const T cx, const T cy, const T cz)
|
|
: a(ax,ay,az)
|
|
, b(bx,by,bz)
|
|
, c(cx,cy,cz) {}
|
|
|
|
// function call operator
|
|
void operator () (const Vector3<T> &a0, const Vector3<T> &b0, const Vector3<T> &c0)
|
|
{
|
|
a = a0; b = b0; c = c0;
|
|
}
|
|
|
|
// test for equality
|
|
bool operator == (const Matrix3<T> &m)
|
|
{
|
|
return (a==m.a && b==m.b && c==m.c);
|
|
}
|
|
|
|
// test for inequality
|
|
bool operator != (const Matrix3<T> &m)
|
|
{
|
|
return (a!=m.a || b!=m.b || c!=m.c);
|
|
}
|
|
|
|
// negation
|
|
Matrix3<T> operator - (void) const
|
|
{
|
|
return Matrix3<T>(-a,-b,-c);
|
|
}
|
|
|
|
// addition
|
|
Matrix3<T> operator + (const Matrix3<T> &m) const
|
|
{
|
|
return Matrix3<T>(a+m.a, b+m.b, c+m.c);
|
|
}
|
|
Matrix3<T> &operator += (const Matrix3<T> &m)
|
|
{
|
|
return *this = *this + m;
|
|
}
|
|
|
|
// subtraction
|
|
Matrix3<T> operator - (const Matrix3<T> &m) const
|
|
{
|
|
return Matrix3<T>(a-m.a, b-m.b, c-m.c);
|
|
}
|
|
Matrix3<T> &operator -= (const Matrix3<T> &m)
|
|
{
|
|
return *this = *this - m;
|
|
}
|
|
|
|
// uniform scaling
|
|
Matrix3<T> operator * (const T num) const
|
|
{
|
|
return Matrix3<T>(a*num, b*num, c*num);
|
|
}
|
|
Matrix3<T> &operator *= (const T num)
|
|
{
|
|
return *this = *this * num;
|
|
}
|
|
Matrix3<T> operator / (const T num) const
|
|
{
|
|
return Matrix3<T>(a/num, b/num, c/num);
|
|
}
|
|
Matrix3<T> &operator /= (const T num)
|
|
{
|
|
return *this = *this / num;
|
|
}
|
|
|
|
// allow a Matrix3 to be used as an array of vectors, 0 indexed
|
|
Vector3<T> & operator[](uint8_t i) {
|
|
Vector3<T> *_v = &a;
|
|
#if MATH_CHECK_INDEXES
|
|
assert(i >= 0 && i < 3);
|
|
#endif
|
|
return _v[i];
|
|
}
|
|
|
|
const Vector3<T> & operator[](uint8_t i) const {
|
|
const Vector3<T> *_v = &a;
|
|
#if MATH_CHECK_INDEXES
|
|
assert(i >= 0 && i < 3);
|
|
#endif
|
|
return _v[i];
|
|
}
|
|
|
|
// multiplication by a vector
|
|
Vector3<T> operator *(const Vector3<T> &v) const;
|
|
|
|
// multiplication of transpose by a vector
|
|
Vector3<T> mul_transpose(const Vector3<T> &v) const;
|
|
|
|
// multiplication by a vector giving a Vector2 result (XY components)
|
|
Vector2<T> mulXY(const Vector3<T> &v) const;
|
|
|
|
// extract x column
|
|
Vector3<T> colx(void) const
|
|
{
|
|
return Vector3<T>(a.x, b.x, c.x);
|
|
}
|
|
|
|
// extract y column
|
|
Vector3<T> coly(void) const
|
|
{
|
|
return Vector3<T>(a.y, b.y, c.y);
|
|
}
|
|
|
|
// extract z column
|
|
Vector3<T> colz(void) const
|
|
{
|
|
return Vector3<T>(a.z, b.z, c.z);
|
|
}
|
|
|
|
// multiplication by another Matrix3<T>
|
|
Matrix3<T> operator *(const Matrix3<T> &m) const;
|
|
|
|
Matrix3<T> &operator *=(const Matrix3<T> &m)
|
|
{
|
|
return *this = *this * m;
|
|
}
|
|
|
|
// transpose the matrix
|
|
Matrix3<T> transposed(void) const;
|
|
|
|
void transpose(void)
|
|
{
|
|
*this = transposed();
|
|
}
|
|
|
|
/**
|
|
* Calculate the determinant of this matrix.
|
|
*
|
|
* @return The value of the determinant.
|
|
*/
|
|
T det() const;
|
|
|
|
/**
|
|
* Calculate the inverse of this matrix.
|
|
*
|
|
* @param inv[in] Where to store the result.
|
|
*
|
|
* @return If this matrix is invertible, then true is returned. Otherwise,
|
|
* \p inv is unmodified and false is returned.
|
|
*/
|
|
bool inverse(Matrix3<T>& inv) const WARN_IF_UNUSED;
|
|
|
|
/**
|
|
* Invert this matrix if it is invertible.
|
|
*
|
|
* @return Return true if this matrix could be successfully inverted and
|
|
* false otherwise.
|
|
*/
|
|
bool invert() WARN_IF_UNUSED;
|
|
|
|
// zero the matrix
|
|
void zero(void) {
|
|
memset((void*)this, 0, sizeof(*this));
|
|
}
|
|
|
|
// setup the identity matrix
|
|
void identity(void) {
|
|
zero();
|
|
a.x = b.y = c.z = 1;
|
|
}
|
|
|
|
// check if any elements are NAN
|
|
bool is_nan(void) WARN_IF_UNUSED
|
|
{
|
|
return a.is_nan() || b.is_nan() || c.is_nan();
|
|
}
|
|
|
|
/*
|
|
create a rotation matrix from Euler angles in 321 euler ordering
|
|
*/
|
|
void from_euler(T roll, T pitch, T yaw);
|
|
|
|
/* create eulers from a rotation matrix.
|
|
roll is from -Pi to Pi
|
|
pitch is from -Pi/2 to Pi/2
|
|
yaw is from -Pi to Pi
|
|
euler order is 321
|
|
*/
|
|
void to_euler(T *roll, T *pitch, T *yaw) const;
|
|
|
|
// create matrix from rotation enum
|
|
void from_rotation(enum Rotation rotation);
|
|
|
|
/*
|
|
calculate Euler angles (312 convention) for the matrix.
|
|
See http://www.atacolorado.com/eulersequences.doc
|
|
vector is returned in r, p, y order
|
|
*/
|
|
Vector3<T> to_euler312() const;
|
|
|
|
/*
|
|
fill the matrix from Euler angles in radians in 312 convention
|
|
*/
|
|
void from_euler312(T roll, T pitch, T yaw);
|
|
|
|
// apply an additional rotation from a body frame gyro vector
|
|
// to a rotation matrix.
|
|
void rotate(const Vector3<T> &g);
|
|
|
|
// create rotation matrix for rotation about the vector v by angle theta
|
|
// See: https://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
|
|
// "Rotation matrix from axis and angle"
|
|
void from_axis_angle(const Vector3<T> &v, T theta);
|
|
|
|
// normalize a rotation matrix
|
|
void normalize(void);
|
|
|
|
// double/float conversion
|
|
Matrix3<double> todouble(void) const {
|
|
return Matrix3<double>(a.todouble(), b.todouble(), c.todouble());
|
|
}
|
|
Matrix3<float> tofloat(void) const {
|
|
return Matrix3<float>(a.tofloat(), b.tofloat(), c.tofloat());
|
|
}
|
|
};
|
|
|
|
typedef Matrix3<int16_t> Matrix3i;
|
|
typedef Matrix3<uint16_t> Matrix3ui;
|
|
typedef Matrix3<int32_t> Matrix3l;
|
|
typedef Matrix3<uint32_t> Matrix3ul;
|
|
typedef Matrix3<float> Matrix3f;
|
|
typedef Matrix3<double> Matrix3d;
|