mirror of https://github.com/ArduPilot/ardupilot
258 lines
7.2 KiB
C++
258 lines
7.2 KiB
C++
/*
|
|
* matrix3.cpp
|
|
* Copyright (C) Andrew Tridgell 2012
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#pragma GCC optimize("O2")
|
|
|
|
#include "AP_Math.h"
|
|
|
|
// create a rotation matrix given some euler angles
|
|
// this is based on https://github.com/ArduPilot/Datasheets/blob/main/References/EulerAngles.pdf
|
|
template <typename T>
|
|
void Matrix3<T>::from_euler(T roll, T pitch, T yaw)
|
|
{
|
|
const T cp = cosF(pitch);
|
|
const T sp = sinF(pitch);
|
|
const T sr = sinF(roll);
|
|
const T cr = cosF(roll);
|
|
const T sy = sinF(yaw);
|
|
const T cy = cosF(yaw);
|
|
|
|
a.x = cp * cy;
|
|
a.y = (sr * sp * cy) - (cr * sy);
|
|
a.z = (cr * sp * cy) + (sr * sy);
|
|
b.x = cp * sy;
|
|
b.y = (sr * sp * sy) + (cr * cy);
|
|
b.z = (cr * sp * sy) - (sr * cy);
|
|
c.x = -sp;
|
|
c.y = sr * cp;
|
|
c.z = cr * cp;
|
|
}
|
|
|
|
// calculate euler angles from a rotation matrix
|
|
// this is based on https://github.com/ArduPilot/Datasheets/blob/main/References/EulerAngles.pdf
|
|
template <typename T>
|
|
void Matrix3<T>::to_euler(T *roll, T *pitch, T *yaw) const
|
|
{
|
|
if (pitch != nullptr) {
|
|
*pitch = -safe_asin(c.x);
|
|
}
|
|
if (roll != nullptr) {
|
|
*roll = atan2F(c.y, c.z);
|
|
}
|
|
if (yaw != nullptr) {
|
|
*yaw = atan2F(b.x, a.x);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void Matrix3<T>::from_rotation(enum Rotation rotation)
|
|
{
|
|
(*this).a = {1,0,0};
|
|
(*this).b = {0,1,0};
|
|
(*this).c = {0,0,1};
|
|
|
|
(*this).a.rotate(rotation);
|
|
(*this).b.rotate(rotation);
|
|
(*this).c.rotate(rotation);
|
|
(*this).transpose();
|
|
}
|
|
|
|
/*
|
|
calculate Euler angles (312 convention) for the matrix.
|
|
See http://www.atacolorado.com/eulersequences.doc
|
|
vector is returned in r, p, y order
|
|
*/
|
|
template <typename T>
|
|
Vector3<T> Matrix3<T>::to_euler312() const
|
|
{
|
|
return Vector3<T>(asinF(c.y),
|
|
atan2F(-c.x, c.z),
|
|
atan2F(-a.y, b.y));
|
|
}
|
|
|
|
/*
|
|
fill the matrix from Euler angles in radians in 312 convention
|
|
*/
|
|
template <typename T>
|
|
void Matrix3<T>::from_euler312(T roll, T pitch, T yaw)
|
|
{
|
|
const T c3 = cosF(pitch);
|
|
const T s3 = sinF(pitch);
|
|
const T s2 = sinF(roll);
|
|
const T c2 = cosF(roll);
|
|
const T s1 = sinF(yaw);
|
|
const T c1 = cosF(yaw);
|
|
|
|
a.x = c1 * c3 - s1 * s2 * s3;
|
|
b.y = c1 * c2;
|
|
c.z = c3 * c2;
|
|
a.y = -c2*s1;
|
|
a.z = s3*c1 + c3*s2*s1;
|
|
b.x = c3*s1 + s3*s2*c1;
|
|
b.z = s1*s3 - s2*c1*c3;
|
|
c.x = -s3*c2;
|
|
c.y = s2;
|
|
}
|
|
|
|
// apply an additional rotation from a body frame gyro vector
|
|
// to a rotation matrix.
|
|
template <typename T>
|
|
void Matrix3<T>::rotate(const Vector3<T> &g)
|
|
{
|
|
(*this) += Matrix3<T>{
|
|
a.y * g.z - a.z * g.y, a.z * g.x - a.x * g.z, a.x * g.y - a.y * g.x,
|
|
b.y * g.z - b.z * g.y, b.z * g.x - b.x * g.z, b.x * g.y - b.y * g.x,
|
|
c.y * g.z - c.z * g.y, c.z * g.x - c.x * g.z, c.x * g.y - c.y * g.x
|
|
};
|
|
}
|
|
|
|
/*
|
|
re-normalise a rotation matrix
|
|
*/
|
|
template <typename T>
|
|
void Matrix3<T>::normalize(void)
|
|
{
|
|
const T error = a * b;
|
|
const Vector3<T> t0 = a - (b * (0.5f * error));
|
|
const Vector3<T> t1 = b - (a * (0.5f * error));
|
|
const Vector3<T> t2 = t0 % t1;
|
|
a = t0 * (1.0f / t0.length());
|
|
b = t1 * (1.0f / t1.length());
|
|
c = t2 * (1.0f / t2.length());
|
|
}
|
|
|
|
// multiplication by a vector
|
|
template <typename T>
|
|
Vector3<T> Matrix3<T>::operator *(const Vector3<T> &v) const
|
|
{
|
|
return Vector3<T>(a.x * v.x + a.y * v.y + a.z * v.z,
|
|
b.x * v.x + b.y * v.y + b.z * v.z,
|
|
c.x * v.x + c.y * v.y + c.z * v.z);
|
|
}
|
|
|
|
// multiplication by a vector, extracting only the xy components
|
|
template <typename T>
|
|
Vector2<T> Matrix3<T>::mulXY(const Vector3<T> &v) const
|
|
{
|
|
return Vector2<T>(a.x * v.x + a.y * v.y + a.z * v.z,
|
|
b.x * v.x + b.y * v.y + b.z * v.z);
|
|
}
|
|
|
|
// multiplication of transpose by a vector
|
|
template <typename T>
|
|
Vector3<T> Matrix3<T>::mul_transpose(const Vector3<T> &v) const
|
|
{
|
|
return Vector3<T>(a.x * v.x + b.x * v.y + c.x * v.z,
|
|
a.y * v.x + b.y * v.y + c.y * v.z,
|
|
a.z * v.x + b.z * v.y + c.z * v.z);
|
|
}
|
|
|
|
// multiplication by another Matrix3<T>
|
|
template <typename T>
|
|
Matrix3<T> Matrix3<T>::operator *(const Matrix3<T> &m) const
|
|
{
|
|
Matrix3<T> temp (Vector3<T>(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x,
|
|
a.x * m.a.y + a.y * m.b.y + a.z * m.c.y,
|
|
a.x * m.a.z + a.y * m.b.z + a.z * m.c.z),
|
|
Vector3<T>(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x,
|
|
b.x * m.a.y + b.y * m.b.y + b.z * m.c.y,
|
|
b.x * m.a.z + b.y * m.b.z + b.z * m.c.z),
|
|
Vector3<T>(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x,
|
|
c.x * m.a.y + c.y * m.b.y + c.z * m.c.y,
|
|
c.x * m.a.z + c.y * m.b.z + c.z * m.c.z));
|
|
return temp;
|
|
}
|
|
|
|
template <typename T>
|
|
Matrix3<T> Matrix3<T>::transposed(void) const
|
|
{
|
|
return Matrix3<T>(Vector3<T>(a.x, b.x, c.x),
|
|
Vector3<T>(a.y, b.y, c.y),
|
|
Vector3<T>(a.z, b.z, c.z));
|
|
}
|
|
|
|
template <typename T>
|
|
T Matrix3<T>::det() const
|
|
{
|
|
return a.x * (b.y * c.z - b.z * c.y) +
|
|
a.y * (b.z * c.x - b.x * c.z) +
|
|
a.z * (b.x * c.y - b.y * c.x);
|
|
}
|
|
|
|
template <typename T>
|
|
bool Matrix3<T>::inverse(Matrix3<T>& inv) const
|
|
{
|
|
const T d = det();
|
|
|
|
if (is_zero(d)) {
|
|
return false;
|
|
}
|
|
|
|
inv.a.x = (b.y * c.z - c.y * b.z) / d;
|
|
inv.a.y = (a.z * c.y - a.y * c.z) / d;
|
|
inv.a.z = (a.y * b.z - a.z * b.y) / d;
|
|
inv.b.x = (b.z * c.x - b.x * c.z) / d;
|
|
inv.b.y = (a.x * c.z - a.z * c.x) / d;
|
|
inv.b.z = (b.x * a.z - a.x * b.z) / d;
|
|
inv.c.x = (b.x * c.y - c.x * b.y) / d;
|
|
inv.c.y = (c.x * a.y - a.x * c.y) / d;
|
|
inv.c.z = (a.x * b.y - b.x * a.y) / d;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool Matrix3<T>::invert()
|
|
{
|
|
Matrix3<T> inv;
|
|
bool success = inverse(inv);
|
|
if (success) {
|
|
*this = inv;
|
|
}
|
|
return success;
|
|
}
|
|
|
|
// create rotation matrix for rotation about the vector v by angle theta
|
|
// See: http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/
|
|
template <typename T>
|
|
void Matrix3<T>::from_axis_angle(const Vector3<T> &v, T theta)
|
|
{
|
|
const T C = cosF(theta);
|
|
const T S = sinF(theta);
|
|
const T t = 1.0f - C;
|
|
const Vector3<T> normv = v.normalized();
|
|
const T x = normv.x;
|
|
const T y = normv.y;
|
|
const T z = normv.z;
|
|
|
|
a.x = t*x*x + C;
|
|
a.y = t*x*y - z*S;
|
|
a.z = t*x*z + y*S;
|
|
b.x = t*x*y + z*S;
|
|
b.y = t*y*y + C;
|
|
b.z = t*y*z - x*S;
|
|
c.x = t*x*z - y*S;
|
|
c.y = t*y*z + x*S;
|
|
c.z = t*z*z + C;
|
|
}
|
|
|
|
|
|
// define for float and double
|
|
template class Matrix3<float>;
|
|
template class Matrix3<double>;
|