ardupilot/libraries/AP_MSP/AP_MSP_Telem_Backend.cpp

1328 lines
42 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Baro/AP_Baro.h>
#include <AP_Airspeed/AP_Airspeed.h>
#include <AP_BattMonitor/AP_BattMonitor.h>
#include <AP_Compass/AP_Compass.h>
#include <AP_ESC_Telem/AP_ESC_Telem.h>
#include <RC_Channel/RC_Channel.h>
#include <AP_Common/AP_FWVersion.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_Notify/AP_Notify.h>
#include <AP_OpticalFlow/AP_OpticalFlow.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
#include <AP_RSSI/AP_RSSI.h>
#include <AP_RTC/AP_RTC.h>
#include <GCS_MAVLink/GCS.h>
#include "AP_MSP.h"
#include "AP_MSP_Telem_Backend.h"
#include <ctype.h>
#include <stdio.h>
#if HAL_MSP_ENABLED
extern const AP_HAL::HAL& hal;
constexpr uint8_t AP_MSP_Telem_Backend::arrows[8];
using namespace MSP;
AP_MSP_Telem_Backend::AP_MSP_Telem_Backend(AP_HAL::UARTDriver *uart) : AP_RCTelemetry(MSP_TIME_SLOT_MAX)
{
_msp_port.uart = uart;
}
/*
Scheduler helper
*/
void AP_MSP_Telem_Backend::setup_wfq_scheduler(void)
{
// initialize packet weights for the WFQ scheduler
// priority[i] = 1/_scheduler.packet_weight[i]
// rate[i] = LinkRate * ( priority[i] / (sum(priority[1-n])) )
set_scheduler_entry(EMPTY_SLOT, 50, 50); // nothing to send
set_scheduler_entry(NAME, 200, 200); // 5Hz 12 chars string used for general purpose text messages
set_scheduler_entry(STATUS, 500, 500); // 2Hz flightmode
set_scheduler_entry(CONFIG, 200, 200); // 5Hz OSD item positions
set_scheduler_entry(RAW_GPS, 250, 250); // 4Hz GPS lat/lon
set_scheduler_entry(COMP_GPS, 250, 250); // 4Hz home direction and distance
set_scheduler_entry(ATTITUDE, 200, 200); // 5Hz attitude
set_scheduler_entry(ALTITUDE, 250, 250); // 4Hz altitude(cm) and velocity(cm/s)
set_scheduler_entry(ANALOG, 250, 250); // 4Hz rssi + batt
#if AP_BATTERY_ENABLED
set_scheduler_entry(BATTERY_STATE, 500, 500); // 2Hz battery
#endif
#if HAL_WITH_ESC_TELEM
set_scheduler_entry(ESC_SENSOR_DATA, 500, 500); // 2Hz ESC telemetry
#endif
set_scheduler_entry(RTC_DATETIME, 1000, 1000); // 1Hz RTC
}
/*
* init - perform required initialisation
*/
bool AP_MSP_Telem_Backend::init()
{
enable_warnings();
return AP_RCTelemetry::init();
}
bool AP_MSP_Telem_Backend::init_uart()
{
if (_msp_port.uart != nullptr) {
// re-init port here for use in this thread
_msp_port.uart->begin(0);
return true;
}
return false;
}
void AP_MSP_Telem_Backend::process_outgoing_data()
{
if (is_scheduler_enabled()) {
AP_RCTelemetry::run_wfq_scheduler();
}
}
/*
Scheduler helper
*/
bool AP_MSP_Telem_Backend::is_packet_ready(uint8_t idx, bool queue_empty)
{
switch (idx) {
case EMPTY_SLOT: // empty slot
case NAME: // used for status_text messages
case STATUS: // flightmode
case CONFIG: // OSD config
case RAW_GPS: // lat,lon, speed
case COMP_GPS: // home dir,dist
case ATTITUDE: // Attitude
case ALTITUDE: // Altitude and Vario
case ANALOG: // Rssi, Battery, mAh, Current
#if AP_BATTERY_ENABLED
case BATTERY_STATE: // voltage, capacity, current, mAh
#endif
#if HAL_WITH_ESC_TELEM
case ESC_SENSOR_DATA: // esc temp + rpm
#endif
case RTC_DATETIME: // RTC
return true;
default:
return false;
}
}
/*
Invoked at each scheduler step
*/
void AP_MSP_Telem_Backend::process_packet(uint8_t idx)
{
if (idx == EMPTY_SLOT) {
return;
}
uint8_t out_buf[MSP_PORT_OUTBUF_SIZE] {};
msp_packet_t reply = {
.buf = { .ptr = out_buf, .end = MSP_ARRAYEND(out_buf), },
.cmd = (int16_t)msp_packet_type_map[idx],
.flags = 0,
.result = 0,
};
uint8_t *out_buf_head = reply.buf.ptr;
msp_process_out_command(msp_packet_type_map[idx], &reply.buf);
uint32_t len = reply.buf.ptr - &out_buf[0];
sbuf_switch_to_reader(&reply.buf, out_buf_head); // change streambuf direction
if (len > 0) {
// don't send zero length packets
msp_serial_encode(&_msp_port, &reply, _msp_port.msp_version);
}
_msp_port.c_state = MSP_IDLE;
}
#if AP_BATTERY_ENABLED
uint8_t AP_MSP_Telem_Backend::calc_cell_count(const float battery_voltage)
{
return floorf((battery_voltage / CELLFULL) + 1);
}
#endif
float AP_MSP_Telem_Backend::get_vspeed_ms(void) const
{
{
// release semaphore as soon as possible
AP_AHRS &_ahrs = AP::ahrs();
Vector3f v {};
WITH_SEMAPHORE(_ahrs.get_semaphore());
if (_ahrs.get_velocity_NED(v)) {
return -v.z;
}
}
AP_Baro &_baro = AP::baro();
WITH_SEMAPHORE(_baro.get_semaphore());
return _baro.get_climb_rate();
}
void AP_MSP_Telem_Backend::update_home_pos(home_state_t &home_state)
{
AP_AHRS &_ahrs = AP::ahrs();
WITH_SEMAPHORE(_ahrs.get_semaphore());
Location loc;
float alt;
if (_ahrs.get_location(loc) && _ahrs.home_is_set()) {
const Location &home_loc = _ahrs.get_home();
home_state.home_distance_m = home_loc.get_distance(loc);
home_state.home_bearing_cd = loc.get_bearing_to(home_loc);
} else {
home_state.home_distance_m = 0;
home_state.home_bearing_cd = 0;
}
_ahrs.get_relative_position_D_home(alt);
home_state.rel_altitude_cm = -alt * 100;
home_state.home_is_set = _ahrs.home_is_set();
}
#if AP_GPS_ENABLED
void AP_MSP_Telem_Backend::update_gps_state(gps_state_t &gps_state)
{
AP_GPS& gps = AP::gps();
memset(&gps_state, 0, sizeof(gps_state));
WITH_SEMAPHORE(gps.get_semaphore());
gps_state.fix_type = gps.status() >= AP_GPS::GPS_Status::GPS_OK_FIX_3D? 2:0;
gps_state.num_sats = gps.num_sats();
if (gps_state.fix_type > 0) {
const Location &loc = AP::gps().location(); //get gps instance 0
gps_state.lat = loc.lat;
gps_state.lon = loc.lng;
gps_state.alt_m = loc.alt/100; // 1m resolution
gps_state.speed_cms = gps.ground_speed() * 100;
gps_state.ground_course_dd = gps.ground_course_cd() / 10;
}
}
#endif
#if AP_BATTERY_ENABLED
void AP_MSP_Telem_Backend::update_battery_state(battery_state_t &battery_state)
{
memset(&battery_state, 0, sizeof(battery_state));
const AP_BattMonitor &_battery = AP::battery();
if (!_battery.current_amps(battery_state.batt_current_a)) {
battery_state.batt_current_a = 0;
}
if (!_battery.consumed_mah(battery_state.batt_consumed_mah)) {
battery_state.batt_consumed_mah = 0;
}
battery_state.batt_voltage_v =_battery.voltage();
battery_state.batt_capacity_mah = _battery.pack_capacity_mah();
const AP_Notify& notify = AP::notify();
if (notify.flags.failsafe_battery) {
battery_state.batt_state = MSP_BATTERY_CRITICAL;
} else {
battery_state.batt_state = MSP_BATTERY_OK;
}
// detect cellcount and update only if we get a higher values, we do not want to update it while discharging
uint8_t cc = calc_cell_count(battery_state.batt_voltage_v);
if (cc > battery_state.batt_cellcount) {
battery_state.batt_cellcount = cc;
}
}
#endif // AP_BATTERY_ENABLED
void AP_MSP_Telem_Backend::update_airspeed(airspeed_state_t &airspeed_state)
{
AP_AHRS &ahrs = AP::ahrs();
WITH_SEMAPHORE(ahrs.get_semaphore());
airspeed_state.airspeed_have_estimate = ahrs.airspeed_estimate(airspeed_state.airspeed_estimate_ms);
if (!airspeed_state.airspeed_have_estimate) {
airspeed_state.airspeed_estimate_ms = 0.0;
}
}
/*
MSP OSDs can display up to MSP_TXT_VISIBLE_CHARS chars (UTF8 characters are supported)
We display the flight mode string either with or without wind state
*/
void AP_MSP_Telem_Backend::update_flight_mode_str(char *flight_mode_str, uint8_t size, bool wind_enabled)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return;
}
#endif
AP_Notify *notify = AP_Notify::get_singleton();
if (notify == nullptr) {
return;
}
// clear
memset(flight_mode_str, 0, size);
if (wind_enabled) {
/*
Wind is rendered next to the current flight mode, for the direction we use an UTF8 arrow (bytes 0xE286[nn])
example: MANU 4m/s ↗
*/
AP_AHRS &ahrs = AP::ahrs();
Vector3f v;
{
WITH_SEMAPHORE(ahrs.get_semaphore());
v = ahrs.wind_estimate();
}
bool invert_wind = false;
#if OSD_ENABLED
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return;
}
invert_wind = osd->screen[msp->_msp_status.current_screen].check_option(AP_OSD::OPTION_INVERTED_WIND);
#endif
if (invert_wind) {
v = -v;
}
uint8_t units = OSD_UNIT_METRIC;
#if OSD_ENABLED
units = osd->units == AP_OSD::UNITS_IMPERIAL ? OSD_UNIT_IMPERIAL : OSD_UNIT_METRIC;
#endif
// if needed convert m/s to ft/s
const float v_length = (units == OSD_UNIT_METRIC) ? v.length() : v.length() * 3.28084;
const char* unit = (units == OSD_UNIT_METRIC) ? "m/s" : "f/s";
if (v_length > 1.0f) {
const int32_t angle = wrap_360_cd(DEGX100 * atan2f(v.y, v.x) - ahrs.yaw_sensor);
const int32_t interval = 36000 / ARRAY_SIZE(arrows);
uint8_t arrow = arrows[((angle + interval / 2) / interval) % ARRAY_SIZE(arrows)];
snprintf(flight_mode_str, size, "%s %d%s%c%c%c", notify->get_flight_mode_str(), (uint8_t)roundf(v_length), unit, 0xE2, 0x86, arrow);
} else {
snprintf(flight_mode_str, size, "%s ---%s", notify->get_flight_mode_str(), unit);
}
} else {
/*
Flight mode is rendered with simple mode flags
examples:
MANU
MANU [S]
MANU [SS]
*/
#if HAL_GCS_ENABLED
const char* simple_mode_str = gcs().simple_input_active() ? " [S]" : (gcs().supersimple_input_active() ? " [SS]" : "");
snprintf(flight_mode_str, size, "%s%s", notify->get_flight_mode_str(), simple_mode_str);
#else
snprintf(flight_mode_str, size, "%s", notify->get_flight_mode_str());
#endif
}
}
void AP_MSP_Telem_Backend::enable_warnings()
{
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return;
}
BIT_SET(msp->_osd_config.enabled_warnings, OSD_WARNING_FAIL_SAFE);
#if AP_BATTERY_ENABLED
BIT_SET(msp->_osd_config.enabled_warnings, OSD_WARNING_BATTERY_CRITICAL);
#endif
}
void AP_MSP_Telem_Backend::process_incoming_data()
{
if (_msp_port.uart == nullptr) {
return;
}
uint32_t numc = MIN(_msp_port.uart->available(), 1024U);
if (numc > 0) {
// Process incoming bytes
while (numc-- > 0) {
const uint8_t c = _msp_port.uart->read();
msp_parse_received_data(&_msp_port, c);
if (_msp_port.c_state == MSP_COMMAND_RECEIVED) {
msp_process_received_command();
}
}
}
}
/*
send an MSP packet
*/
void AP_MSP_Telem_Backend::msp_send_packet(uint16_t cmd, MSP::msp_version_e msp_version, const void *p, uint16_t size, bool is_request)
{
uint8_t out_buf[MSP_PORT_OUTBUF_SIZE];
msp_packet_t pkt = {
.buf = { .ptr = out_buf, .end = MSP_ARRAYEND(out_buf), },
.cmd = (int16_t)cmd,
.flags = 0,
.result = 0,
};
sbuf_write_data(&pkt.buf, p, size);
sbuf_switch_to_reader(&pkt.buf, &out_buf[0]);
msp_serial_encode(&_msp_port, &pkt, msp_version, is_request);
}
/*
ported from betaflight/src/main/msp/msp_serial.c
*/
void AP_MSP_Telem_Backend::msp_process_received_command()
{
uint8_t out_buf[MSP_PORT_OUTBUF_SIZE];
msp_packet_t reply = {
.buf = { .ptr = out_buf, .end = MSP_ARRAYEND(out_buf), },
.cmd = -1,
.flags = 0,
.result = 0,
};
uint8_t *out_buf_head = reply.buf.ptr;
msp_packet_t command = {
.buf = { .ptr = _msp_port.in_buf, .end = _msp_port.in_buf + _msp_port.data_size, },
.cmd = (int16_t)_msp_port.cmd_msp,
.flags = _msp_port.cmd_flags,
.result = 0,
};
const MSPCommandResult status = msp_process_command(&command, &reply);
if (status != MSP_RESULT_NO_REPLY) {
sbuf_switch_to_reader(&reply.buf, out_buf_head); // change streambuf direction
msp_serial_encode(&_msp_port, &reply, _msp_port.msp_version);
}
_msp_port.c_state = MSP_IDLE;
}
/*
ported from inav/src/main/fc/fc_msp.c
*/
MSPCommandResult AP_MSP_Telem_Backend::msp_process_command(msp_packet_t *cmd, msp_packet_t *reply)
{
MSPCommandResult ret = MSP_RESULT_ACK;
sbuf_t *dst = &reply->buf;
sbuf_t *src = &cmd->buf;
const uint16_t cmd_msp = cmd->cmd;
// initialize reply by default
reply->cmd = cmd->cmd;
if (MSP2_IS_SENSOR_MESSAGE(cmd_msp)) {
ret = msp_process_sensor_command(cmd_msp, src);
} else {
ret = msp_process_out_command(cmd_msp, dst);
}
// Process DONT_REPLY flag
if (cmd->flags & MSP_FLAG_DONT_REPLY) {
ret = MSP_RESULT_NO_REPLY;
}
reply->result = ret;
return ret;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_command(uint16_t cmd_msp, sbuf_t *dst)
{
switch (cmd_msp) {
case MSP_API_VERSION:
return msp_process_out_api_version(dst);
case MSP_FC_VARIANT:
return msp_process_out_fc_variant(dst);
case MSP_FC_VERSION:
return msp_process_out_fc_version(dst);
case MSP_BOARD_INFO:
return msp_process_out_board_info(dst);
case MSP_BUILD_INFO:
return msp_process_out_build_info(dst);
case MSP_NAME:
return msp_process_out_name(dst);
case MSP_OSD_CONFIG:
return msp_process_out_osd_config(dst);
case MSP_STATUS:
case MSP_STATUS_EX:
return msp_process_out_status(dst);
case MSP_RAW_GPS:
return msp_process_out_raw_gps(dst);
case MSP_COMP_GPS:
return msp_process_out_comp_gps(dst);
case MSP_ATTITUDE:
return msp_process_out_attitude(dst);
case MSP_ALTITUDE:
return msp_process_out_altitude(dst);
case MSP_ANALOG:
return msp_process_out_analog(dst);
#if AP_BATTERY_ENABLED
case MSP_BATTERY_STATE:
return msp_process_out_battery_state(dst);
#endif
case MSP_UID:
return msp_process_out_uid(dst);
#if HAL_WITH_ESC_TELEM
case MSP_ESC_SENSOR_DATA:
return msp_process_out_esc_sensor_data(dst);
#endif
case MSP_RTC:
return msp_process_out_rtc(dst);
case MSP_RC:
return msp_process_out_rc(dst);
default:
// MSP always requires an ACK even for unsupported messages
return MSP_RESULT_ACK;
}
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_sensor_command(uint16_t cmd_msp, sbuf_t *src)
{
MSP_UNUSED(src);
switch (cmd_msp) {
#if HAL_MSP_RANGEFINDER_ENABLED
case MSP2_SENSOR_RANGEFINDER: {
const MSP::msp_rangefinder_data_message_t *pkt = (const MSP::msp_rangefinder_data_message_t *)src->ptr;
msp_handle_rangefinder(*pkt);
}
break;
#endif
#if HAL_MSP_OPTICALFLOW_ENABLED
case MSP2_SENSOR_OPTIC_FLOW: {
const MSP::msp_opflow_data_message_t *pkt = (const MSP::msp_opflow_data_message_t *)src->ptr;
msp_handle_opflow(*pkt);
}
break;
#endif
#if HAL_MSP_GPS_ENABLED
case MSP2_SENSOR_GPS: {
const MSP::msp_gps_data_message_t *pkt = (const MSP::msp_gps_data_message_t *)src->ptr;
msp_handle_gps(*pkt);
}
break;
#endif
#if AP_COMPASS_MSP_ENABLED
case MSP2_SENSOR_COMPASS: {
const MSP::msp_compass_data_message_t *pkt = (const MSP::msp_compass_data_message_t *)src->ptr;
msp_handle_compass(*pkt);
}
break;
#endif
#if AP_BARO_MSP_ENABLED
case MSP2_SENSOR_BAROMETER: {
const MSP::msp_baro_data_message_t *pkt = (const MSP::msp_baro_data_message_t *)src->ptr;
msp_handle_baro(*pkt);
}
break;
#endif
#if AP_AIRSPEED_MSP_ENABLED && AP_AIRSPEED_ENABLED
case MSP2_SENSOR_AIRSPEED: {
const MSP::msp_airspeed_data_message_t *pkt = (const MSP::msp_airspeed_data_message_t *)src->ptr;
msp_handle_airspeed(*pkt);
}
break;
#endif
}
return MSP_RESULT_NO_REPLY;
}
#if HAL_MSP_OPTICALFLOW_ENABLED
void AP_MSP_Telem_Backend::msp_handle_opflow(const MSP::msp_opflow_data_message_t &pkt)
{
AP_OpticalFlow *optflow = AP::opticalflow();
if (optflow == nullptr) {
return;
}
optflow->handle_msp(pkt);
}
#endif
#if HAL_MSP_RANGEFINDER_ENABLED
void AP_MSP_Telem_Backend::msp_handle_rangefinder(const MSP::msp_rangefinder_data_message_t &pkt)
{
RangeFinder *rangefinder = AP::rangefinder();
if (rangefinder == nullptr) {
return;
}
rangefinder->handle_msp(pkt);
}
#endif
#if HAL_MSP_GPS_ENABLED
void AP_MSP_Telem_Backend::msp_handle_gps(const MSP::msp_gps_data_message_t &pkt)
{
AP::gps().handle_msp(pkt);
}
#endif
#if AP_COMPASS_MSP_ENABLED
void AP_MSP_Telem_Backend::msp_handle_compass(const MSP::msp_compass_data_message_t &pkt)
{
AP::compass().handle_msp(pkt);
}
#endif
#if AP_BARO_MSP_ENABLED
void AP_MSP_Telem_Backend::msp_handle_baro(const MSP::msp_baro_data_message_t &pkt)
{
AP::baro().handle_msp(pkt);
}
#endif
#if AP_AIRSPEED_MSP_ENABLED && AP_AIRSPEED_ENABLED
void AP_MSP_Telem_Backend::msp_handle_airspeed(const MSP::msp_airspeed_data_message_t &pkt)
{
auto *airspeed = AP::airspeed();
if (airspeed) {
airspeed->handle_msp(pkt);
}
}
#endif
uint32_t AP_MSP_Telem_Backend::get_osd_flight_mode_bitmask(void)
{
// Note: we only set the BOXARM bit (bit 0) which is the same for BF, INAV and DJI VTX
// When armed we simply return 1 (1 == 1 << 0)
if (hal.util->get_soft_armed()) {
return 1U;
}
return 0U;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_api_version(sbuf_t *dst)
{
const struct {
uint8_t proto;
uint8_t major;
uint8_t minor;
} api_version {
proto : MSP_PROTOCOL_VERSION,
major : API_VERSION_MAJOR,
minor : API_VERSION_MINOR
};
sbuf_write_data(dst, &api_version, sizeof(api_version));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_fc_version(sbuf_t *dst)
{
const struct {
uint8_t major;
uint8_t minor;
uint8_t patch;
} fc_version {
major : FC_VERSION_MAJOR,
minor : FC_VERSION_MINOR,
patch : FC_VERSION_PATCH_LEVEL
};
sbuf_write_data(dst, &fc_version, sizeof(fc_version));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_fc_variant(sbuf_t *dst)
{
sbuf_write_data(dst, "ARDU", FLIGHT_CONTROLLER_IDENTIFIER_LENGTH);
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_raw_gps(sbuf_t *dst)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return MSP_RESULT_ERROR;
}
#endif
gps_state_t gps_state {};
#if AP_GPS_ENABLED
update_gps_state(gps_state);
#endif
// handle airspeed override
bool airspeed_en = false;
#if OSD_ENABLED
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return MSP_RESULT_ERROR;
}
airspeed_en = osd->screen[msp->_msp_status.current_screen].aspeed.enabled;
#endif
if (airspeed_en) {
airspeed_state_t airspeed_state;
update_airspeed(airspeed_state);
gps_state.speed_cms = airspeed_state.airspeed_estimate_ms * 100; // airspeed in cm/s
}
sbuf_write_data(dst, &gps_state, sizeof(gps_state));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_comp_gps(sbuf_t *dst)
{
home_state_t home_state;
update_home_pos(home_state);
// no need to apply yaw compensation, the DJI air unit will do it for us :-)
uint16_t angle_deg = home_state.home_bearing_cd * 0.01;
if (home_state.home_distance_m < 2) {
//avoid fast rotating arrow at small distances
angle_deg = 0;
}
const struct PACKED {
uint16_t dist_home_m;
uint16_t home_angle_deg;
uint8_t toggle_gps;
} gps {
dist_home_m : uint16_t(constrain_int32(home_state.home_distance_m, 0, 0xFFFF)),
home_angle_deg : angle_deg,
toggle_gps : 1
};
sbuf_write_data(dst, &gps, sizeof(gps));
return MSP_RESULT_ACK;
}
// Autoscroll message is the same as in minimosd-extra.
// Thanks to night-ghost for the approach.
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_name(sbuf_t *dst)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return MSP_RESULT_ERROR;
}
#endif
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return MSP_RESULT_ERROR;
}
AP_Notify * notify = AP_Notify::get_singleton();
if (notify) {
uint16_t msgtime_ms = 10000; //default is 10 secs
#if OSD_ENABLED
msgtime_ms = AP::osd()->msgtime_s * 1000;
#endif
// text message is visible for _msp.msgtime_s but only if
// a flight mode change did not steal focus
const uint32_t visible_time_ms = AP_HAL::millis() - notify->get_text_updated_millis();
if (visible_time_ms < msgtime_ms && !msp->_msp_status.flight_mode_focus) {
char buffer[NOTIFY_TEXT_BUFFER_SIZE];
strncpy(buffer, notify->get_text(), ARRAY_SIZE(buffer));
const uint8_t len = strnlen(buffer, ARRAY_SIZE(buffer));
for (uint8_t i=0; i<len; i++) {
//normalize whitespace
if (isspace(buffer[i])) {
buffer[i] = ' ';
} else {
//converted to uppercase,
buffer[i] = toupper(buffer[i]);
}
}
int8_t start_position = 0;
//scroll if required
//scroll pattern: wait, scroll to the left, wait, scroll to the right
if (len > MSP_TXT_VISIBLE_CHARS) {
const uint8_t chars_to_scroll = len - MSP_TXT_VISIBLE_CHARS;
const uint8_t total_cycles = 2*message_scroll_delay + 2*chars_to_scroll;
const uint8_t current_cycle = (visible_time_ms / message_scroll_time_ms) % total_cycles;
//calculate scroll start_position
if (current_cycle < total_cycles/2) {
//move to the left
start_position = current_cycle - message_scroll_delay;
} else {
//move to the right
start_position = total_cycles - current_cycle;
}
start_position = constrain_int16(start_position, 0, chars_to_scroll);
uint8_t end_position = start_position + MSP_TXT_VISIBLE_CHARS;
//ensure array boundaries
start_position = MIN(start_position, int8_t(ARRAY_SIZE(buffer)-1));
end_position = MIN(end_position, int8_t(ARRAY_SIZE(buffer)-1));
//trim invisible part
buffer[end_position] = 0;
}
sbuf_write_data(dst, buffer + start_position, strlen(buffer + start_position)); // max MSP_TXT_VISIBLE_CHARS chars general text...
} else {
bool wind_en = false;
char flight_mode_str[MSP_TXT_BUFFER_SIZE];
#if OSD_ENABLED
wind_en = osd->screen[msp->_msp_status.current_screen].wind.enabled;
#endif
update_flight_mode_str(flight_mode_str, ARRAY_SIZE(flight_mode_str), wind_en);
sbuf_write_data(dst, flight_mode_str, ARRAY_SIZE(flight_mode_str)); // rendered as up to MSP_TXT_VISIBLE_CHARS chars with UTF8 support
}
}
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_status(sbuf_t *dst)
{
struct PACKED {
uint16_t task_delta_time;
uint16_t i2c_error_count;
uint16_t sensor_status;
uint32_t flight_mode_flags;
uint8_t pid_profile;
uint16_t system_load;
uint16_t gyro_cycle_time;
uint8_t box_mode_flags;
uint8_t arming_disable_flags_count;
uint32_t arming_disable_flags;
uint8_t extra_flags;
} status {};
status.flight_mode_flags = get_osd_flight_mode_bitmask();
status.arming_disable_flags_count = 1;
status.arming_disable_flags = !AP::notify().flags.armed;
sbuf_write_data(dst, &status, sizeof(status));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_osd_config(sbuf_t *dst)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return MSP_RESULT_ERROR;
}
#endif
const AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return MSP_RESULT_ERROR;
}
struct PACKED {
uint8_t flags;
uint8_t video_system;
uint8_t units;
uint8_t rssi_alarm;
uint16_t capacity_alarm;
uint8_t unused_0;
uint8_t item_count;
uint16_t alt_alarm;
uint16_t items_position[OSD_ITEM_COUNT];
uint8_t stats_items_count;
uint16_t stats_items[OSD_STAT_COUNT] ;
uint8_t timers_count;
uint16_t timers[OSD_TIMER_COUNT];
uint16_t enabled_warnings_old;
uint8_t warnings_count_new;
uint32_t enabled_warnings_new;
uint8_t available_profiles;
uint8_t selected_profile;
uint8_t osd_stick_overlay;
} osd_config {};
// Configuration
osd_config.units = OSD_UNIT_METRIC;
#if OSD_ENABLED
osd_config.units = osd->units == AP_OSD::UNITS_METRIC ? OSD_UNIT_METRIC : OSD_UNIT_IMPERIAL;
#endif
// Alarms
osd_config.rssi_alarm = msp->_osd_config.rssi_alarm;
osd_config.capacity_alarm = msp->_osd_config.cap_alarm;
osd_config.alt_alarm = msp->_osd_config.alt_alarm;
// Reuse old timer alarm (U16) as OSD_ITEM_COUNT
osd_config.item_count = OSD_ITEM_COUNT;
// Element position and visibility
uint16_t pos = 0; // default is hide this element
for (uint8_t i = 0; i < OSD_ITEM_COUNT; i++) {
pos = 0; // 0 is hide this item
if (msp->_osd_item_settings[i] != nullptr) { // ok supported
if (msp->_osd_item_settings[i]->enabled) { // ok enabled
// let's check if we need to hide this dynamically
if (!BIT_IS_SET_64(osd_hidden_items_bitmask, i)) {
pos = MSP_OSD_POS(msp->_osd_item_settings[i]);
}
}
}
osd_config.items_position[i] = pos;
}
// Post flight statistics
osd_config.stats_items_count = OSD_STAT_COUNT; // stats items count
// Timers
osd_config.timers_count = OSD_TIMER_COUNT; // timers
// Enabled warnings
// API < 1.41
// Send low word first for backwards compatibility
osd_config.enabled_warnings_old = (uint16_t)(msp->_osd_config.enabled_warnings & 0xFFFF);
// API >= 1.41
// Send the warnings count and 32bit enabled warnings flags.
// Add currently active OSD profile (0 indicates OSD profiles not available).
// Add OSD stick overlay mode (0 indicates OSD stick overlay not available).
osd_config.warnings_count_new = OSD_WARNING_COUNT;
osd_config.enabled_warnings_new = msp->_osd_config.enabled_warnings;
// If the feature is not available there is only 1 profile and it's always selected
osd_config.available_profiles = 1;
osd_config.selected_profile = 1;
sbuf_write_data(dst, &osd_config, sizeof(osd_config));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_attitude(sbuf_t *dst)
{
AP_AHRS &ahrs = AP::ahrs();
WITH_SEMAPHORE(ahrs.get_semaphore());
const struct PACKED {
int16_t roll;
int16_t pitch;
int16_t yaw;
} attitude {
roll : int16_t(ahrs.roll_sensor * 0.1), // centidegress to decidegrees
pitch : int16_t(ahrs.pitch_sensor * 0.1), // centidegress to decidegrees
yaw : int16_t(ahrs.yaw_sensor * 0.01) // centidegress to degrees
};
sbuf_write_data(dst, &attitude, sizeof(attitude));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_altitude(sbuf_t *dst)
{
home_state_t home_state;
update_home_pos(home_state);
const struct PACKED {
int32_t rel_altitude_cm; // relative altitude cm
int16_t vspeed_cms; // climb rate cm/s
} altitude {
rel_altitude_cm : home_state.rel_altitude_cm,
vspeed_cms : int16_t(get_vspeed_ms() * 100)
};
sbuf_write_data(dst, &altitude, sizeof(altitude));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_analog(sbuf_t *dst)
{
#if AP_BATTERY_ENABLED
battery_state_t battery_state;
update_battery_state(battery_state);
float rssi;
const struct PACKED {
uint8_t voltage_dv;
uint16_t mah;
uint16_t rssi;
int16_t current_ca;
uint16_t voltage_cv;
} analog {
voltage_dv : (uint8_t)constrain_int16(battery_state.batt_voltage_v * 10, 0, 255), // battery voltage V to dV
mah : (uint16_t)constrain_int32(battery_state.batt_consumed_mah, 0, 0xFFFF), // milliamp hours drawn from battery
rssi : uint16_t(get_rssi(rssi) ? constrain_float(rssi,0,1) * 1023 : 0), // rssi 0-1 to 0-1023)
current_ca : (int16_t)constrain_int32(battery_state.batt_current_a * 100, -0x8000, 0x7FFF), // current A to cA (0.01 steps, range is -320A to 320A)
voltage_cv : (uint16_t)constrain_int32(battery_state.batt_voltage_v * 100,0,0xFFFF) // battery voltage in 0.01V steps
};
#else
float rssi;
const struct PACKED {
uint8_t voltage_dv;
uint16_t mah;
uint16_t rssi;
int16_t current_ca;
uint16_t voltage_cv;
} analog {
voltage_dv : 0,
mah : 0,
rssi : uint16_t(get_rssi(rssi) ? constrain_float(rssi,0,1) * 1023 : 0), // rssi 0-1 to 0-1023)
current_ca : 0,
voltage_cv : 0
};
#endif
sbuf_write_data(dst, &analog, sizeof(analog));
return MSP_RESULT_ACK;
}
#if AP_BATTERY_ENABLED
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_battery_state(sbuf_t *dst)
{
const AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return MSP_RESULT_ERROR;
}
battery_state_t battery_state;
update_battery_state(battery_state);
const struct PACKED {
uint8_t cellcount;
uint16_t capacity_mah;
uint8_t voltage_dv;
uint16_t mah;
int16_t current_ca;
uint8_t state;
uint16_t voltage_cv;
} battery {
cellcount : (uint8_t)constrain_int16((msp->_cellcount > 0 ? msp->_cellcount : battery_state.batt_cellcount), 0, 255), // cell count 0 indicates battery not detected.
capacity_mah : (uint16_t)battery_state.batt_capacity_mah, // in mAh
voltage_dv : (uint8_t)constrain_int16(battery_state.batt_voltage_v * 10, 0, 255), // battery voltage V to dV
mah : (uint16_t)MIN(battery_state.batt_consumed_mah, 0xFFFF), // milliamp hours drawn from battery
current_ca : (int16_t)constrain_int32(battery_state.batt_current_a * 100, -0x8000, 0x7FFF), // current A to cA (0.01 steps, range is -320A to 320A)
state : (uint8_t)battery_state.batt_state, // BATTERY: OK=0, CRITICAL=2
voltage_cv : (uint16_t)constrain_int32(battery_state.batt_voltage_v * 100, 0, 0x7FFF) // battery voltage in 0.01V steps
};
sbuf_write_data(dst, &battery, sizeof(battery));
return MSP_RESULT_ACK;
}
#endif
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_esc_sensor_data(sbuf_t *dst)
{
#if HAL_WITH_ESC_TELEM
AP_ESC_Telem& telem = AP::esc_telem();
if (telem.get_last_telem_data_ms(0)) {
struct PACKED {
uint8_t num_motors;
struct PACKED {
uint8_t temp;
uint16_t rpm;
} data[ESC_TELEM_MAX_ESCS];
} esc_sensor {};
esc_sensor.num_motors = telem.get_num_active_escs();
for (uint8_t i = 0; i < esc_sensor.num_motors; i++) {
int16_t temp = 0;
float rpm = 0.0f;
IGNORE_RETURN(telem.get_rpm(i, rpm));
IGNORE_RETURN(telem.get_temperature(i, temp));
esc_sensor.data[i].temp = uint8_t(temp * 0.01f);
esc_sensor.data[i].rpm = uint16_t(rpm * 0.1f);
}
sbuf_write_data(dst, &esc_sensor, 1 + 3*esc_sensor.num_motors);
}
#endif
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_rtc(sbuf_t *dst)
{
tm localtime_tm {}; // year is relative to 1900
uint64_t time_usec = 0;
#if AP_RTC_ENABLED
if (AP::rtc().get_utc_usec(time_usec)) { // may fail, leaving time_unix at 0
const time_t time_sec = time_usec / 1000000;
struct tm tmd {};
localtime_tm = *gmtime_r(&time_sec, &tmd);
}
#endif
const struct PACKED {
uint16_t year;
uint8_t mon;
uint8_t mday;
uint8_t hour;
uint8_t min;
uint8_t sec;
uint16_t millis;
} rtc {
year : uint16_t(localtime_tm.tm_year + 1900), // tm_year is relative to year 1900
mon : uint8_t(localtime_tm.tm_mon + 1), // MSP requires [1-12] months
mday : uint8_t(localtime_tm.tm_mday),
hour : uint8_t(localtime_tm.tm_hour),
min : uint8_t(localtime_tm.tm_min),
sec : uint8_t(localtime_tm.tm_sec),
millis : uint16_t((time_usec / 1000U) % 1000U)
};
sbuf_write_data(dst, &rtc, sizeof(rtc));
return MSP_RESULT_ACK;
}
#if AP_RC_CHANNEL_ENABLED
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_rc(sbuf_t *dst)
{
float roll = rc().get_roll_channel().norm_input_dz();
float pitch = -rc().get_pitch_channel().norm_input_dz();
float yaw = rc().get_yaw_channel().norm_input_dz();
float throttle = rc().get_throttle_channel().norm_input_dz();
const struct PACKED {
uint16_t a;
uint16_t e;
uint16_t r;
uint16_t t;
} rc {
// send only 4 channels, MSP order is AERT
a : uint16_t(roll*500+1500), // A
e : uint16_t(pitch*500+1500), // E
r : uint16_t(yaw*500+1500), // R
t : uint16_t(throttle*1000+1000) // T
};
sbuf_write_data(dst, &rc, sizeof(rc));
return MSP_RESULT_ACK;
}
#endif // AP_RC_CHANNEL_ENABLED
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_board_info(sbuf_t *dst)
{
const AP_FWVersion &fwver = AP::fwversion();
struct PACKED {
uint16_t hw_revision;
uint8_t aio_flags;
uint8_t capabilities;
uint8_t fw_string_len;
} fw_info {};
#if HAL_WITH_OSD_BITMAP
fw_info.aio_flags = 2; // 2 == FC with MAX7456
#else
fw_info.aio_flags = 0; // 0 == FC without MAX7456
#endif
fw_info.fw_string_len = strlen(fwver.fw_string);
sbuf_write_data(dst, "ARDU", BOARD_IDENTIFIER_LENGTH);
sbuf_write_data(dst, &fw_info, sizeof(fw_info));
sbuf_write_data(dst, fwver.fw_string, strlen(fwver.fw_string));
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_build_info(sbuf_t *dst)
{
const AP_FWVersion &fwver = AP::fwversion();
// we don't use real dates here as that would mean we don't get
// consistent builds. Being able to reproduce the exact build at a
// later date is a valuable property of the code
sbuf_write_data(dst, "Jan 01 1980", BUILD_DATE_LENGTH);
sbuf_write_data(dst, "00:00:00", BUILD_TIME_LENGTH);
sbuf_write_data(dst, fwver.fw_hash_str, GIT_SHORT_REVISION_LENGTH);
return MSP_RESULT_ACK;
}
MSPCommandResult AP_MSP_Telem_Backend::msp_process_out_uid(sbuf_t *dst)
{
uint8_t id[12] {};
uint8_t len = sizeof(id);
hal.util->get_system_id_unformatted(id, len);
sbuf_write_data(dst, id, sizeof(id));
return MSP_RESULT_ACK;
}
void AP_MSP_Telem_Backend::hide_osd_items(void)
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return;
}
#endif
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return;
}
#if AP_BATTERY_ENABLED
const AP_Notify &notify = AP::notify();
#endif
// clear all and only set the flashing ones
BIT_CLEAR(osd_hidden_items_bitmask, OSD_GPS_SATS);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_HOME_DIR);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_HOME_DIST);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_GPS_SPEED);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_CRAFT_NAME);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_AVG_CELL_VOLTAGE);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_MAIN_BATT_VOLTAGE);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_RTC_DATETIME);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_RSSI_VALUE);
if (msp->_msp_status.flashing_on) {
// flash satcount when no 3D Fix
gps_state_t gps_state;
update_gps_state(gps_state);
if (gps_state.fix_type == 0) {
BIT_SET(osd_hidden_items_bitmask, OSD_GPS_SATS);
}
// flash home dir and distance if home is not set
home_state_t home_state;
update_home_pos(home_state);
if (!home_state.home_is_set) {
BIT_SET(osd_hidden_items_bitmask, OSD_HOME_DIR);
BIT_SET(osd_hidden_items_bitmask, OSD_HOME_DIST);
}
// flash airspeed if there's no estimate
bool airspeed_en = false;
#if OSD_ENABLED
airspeed_en = osd->screen[msp->_msp_status.current_screen].aspeed.enabled;
#endif
if (airspeed_en) {
airspeed_state_t airspeed_state;
update_airspeed(airspeed_state);
if (!airspeed_state.airspeed_have_estimate) {
BIT_SET(osd_hidden_items_bitmask, OSD_GPS_SPEED);
}
}
// flash text flightmode for 3secs after each change
if (msp->_msp_status.flight_mode_focus) {
BIT_SET(osd_hidden_items_bitmask, OSD_CRAFT_NAME);
}
#if AP_BATTERY_ENABLED
// flash battery on failsafe
if (notify.flags.failsafe_battery) {
BIT_SET(osd_hidden_items_bitmask, OSD_AVG_CELL_VOLTAGE);
BIT_SET(osd_hidden_items_bitmask, OSD_MAIN_BATT_VOLTAGE);
}
#endif
// flash rtc if no time available
#if AP_RTC_ENABLED
uint64_t time_usec;
if (!AP::rtc().get_utc_usec(time_usec)) {
BIT_SET(osd_hidden_items_bitmask, OSD_RTC_DATETIME);
}
#else
BIT_SET(osd_hidden_items_bitmask, OSD_RTC_DATETIME);
#endif
// flash rssi if disabled
float rssi;
if (!get_rssi(rssi)) {
BIT_SET(osd_hidden_items_bitmask, OSD_RSSI_VALUE);
}
}
// disable flashing for min/max items
if (displaying_stats_screen()) {
BIT_CLEAR(osd_hidden_items_bitmask, OSD_HOME_DIST);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_GPS_SPEED);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_CRAFT_NAME);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_MAIN_BATT_VOLTAGE);
BIT_CLEAR(osd_hidden_items_bitmask, OSD_RSSI_VALUE);
}
}
#if HAL_WITH_MSP_DISPLAYPORT
// ported from betaflight/src/main/io/displayport_msp.c
void AP_MSP_Telem_Backend::msp_displayport_heartbeat()
{
const uint8_t subcmd[] = { msp_displayport_subcmd_e::MSP_DISPLAYPORT_HEARTBEAT };
// heartbeat is used to:
// a) ensure display is not released by remote OSD software
// b) prevent OSD Slave boards from displaying a 'disconnected' status.
msp_send_packet(MSP_DISPLAYPORT, MSP::MSP_V1, subcmd, sizeof(subcmd), false);
}
void AP_MSP_Telem_Backend::msp_displayport_grab()
{
msp_displayport_heartbeat();
}
void AP_MSP_Telem_Backend::msp_displayport_release()
{
const uint8_t subcmd[] = { msp_displayport_subcmd_e::MSP_DISPLAYPORT_RELEASE };
msp_send_packet(MSP_DISPLAYPORT, MSP::MSP_V1, subcmd, sizeof(subcmd), false);
}
void AP_MSP_Telem_Backend::msp_displayport_clear_screen()
{
const uint8_t subcmd[] = { msp_displayport_subcmd_e::MSP_DISPLAYPORT_CLEAR_SCREEN };
msp_send_packet(MSP_DISPLAYPORT, MSP::MSP_V1, subcmd, sizeof(subcmd), false);
}
void AP_MSP_Telem_Backend::msp_displayport_draw_screen()
{
const uint8_t subcmd[] = { msp_displayport_subcmd_e::MSP_DISPLAYPORT_DRAW_SCREEN };
msp_send_packet(MSP_DISPLAYPORT, MSP::MSP_V1, subcmd, sizeof(subcmd), false);
}
void AP_MSP_Telem_Backend::msp_displayport_write_string(uint8_t col, uint8_t row, bool blink, const char *string)
{
const uint8_t len = strnlen(string, OSD_MSP_DISPLAYPORT_MAX_STRING_LENGTH);
struct PACKED {
uint8_t sub_cmd;
uint8_t row;
uint8_t col;
uint8_t attr;
uint8_t text[OSD_MSP_DISPLAYPORT_MAX_STRING_LENGTH];
} packet {};
packet.sub_cmd = msp_displayport_subcmd_e::MSP_DISPLAYPORT_WRITE_STRING;
packet.row = row;
packet.col = col;
if (blink) {
packet.attr |= DISPLAYPORT_MSP_ATTR_BLINK;
}
memcpy(packet.text, string, len);
msp_send_packet(MSP_DISPLAYPORT, MSP::MSP_V1, &packet, 4 + len, false);
}
void AP_MSP_Telem_Backend::msp_displayport_set_options(const uint8_t font_index, const uint8_t screen_resolution)
{
const uint8_t subcmd[] = { msp_displayport_subcmd_e::MSP_DISPLAYPORT_SET_OPTIONS, font_index, screen_resolution };
msp_send_packet(MSP_DISPLAYPORT, MSP::MSP_V1, subcmd, sizeof(subcmd), false);
}
#endif //HAL_WITH_MSP_DISPLAYPORT
bool AP_MSP_Telem_Backend::displaying_stats_screen() const
{
#if OSD_ENABLED
AP_OSD *osd = AP::osd();
if (osd == nullptr) {
return false;
}
AP_MSP *msp = AP::msp();
if (msp == nullptr) {
return false;
}
return osd->screen[msp->_msp_status.current_screen].stat.enabled;
#else
return false;
#endif
}
bool AP_MSP_Telem_Backend::get_rssi(float &rssi) const
{
#if AP_RSSI_ENABLED
AP_RSSI* ap_rssi = AP::rssi();
if (ap_rssi == nullptr) {
return false;
}
if (!ap_rssi->enabled()) {
return false;
}
rssi = ap_rssi->read_receiver_rssi(); // range is [0-1]
return true;
#else
return false;
#endif
}
#endif //HAL_MSP_ENABLED