ardupilot/libraries/AP_Baro/AP_Baro_SPL06.cpp

328 lines
12 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Baro_SPL06.h"
#if AP_BARO_SPL06_ENABLED
#include <utility>
#include <strings.h>
#include <AP_Math/definitions.h>
extern const AP_HAL::HAL &hal;
#define SPL06_CHIP_ID 0x10
#define SPA06_CHIP_ID 0x11
#define SPL06_REG_PRESSURE_B2 0x00 // Pressure MSB Register
#define SPL06_REG_PRESSURE_B1 0x01 // Pressure middle byte Register
#define SPL06_REG_PRESSURE_B0 0x02 // Pressure LSB Register
#define SPL06_REG_PRESSURE_START SPL06_REG_PRESSURE_B2
#define SPL06_PRESSURE_LEN 3 // 24 bits, 3 bytes
#define SPL06_REG_TEMPERATURE_B2 0x03 // Temperature MSB Register
#define SPL06_REG_TEMPERATURE_B1 0x04 // Temperature middle byte Register
#define SPL06_REG_TEMPERATURE_B0 0x05 // Temperature LSB Register
#define SPL06_REG_TEMPERATURE_START SPL06_REG_TEMPERATURE_B2
#define SPL06_TEMPERATURE_LEN 3 // 24 bits, 3 bytes
#define SPL06_REG_PRESSURE_CFG 0x06 // Pressure config
#define SPL06_REG_TEMPERATURE_CFG 0x07 // Temperature config
#define SPL06_REG_MODE_AND_STATUS 0x08 // Mode and status
#define SPL06_REG_INT_AND_FIFO_CFG 0x09 // Interrupt and FIFO config
#define SPL06_REG_INT_STATUS 0x0A // Interrupt and FIFO config
#define SPL06_REG_FIFO_STATUS 0x0B // Interrupt and FIFO config
#define SPL06_REG_RST 0x0C // Softreset Register
#define SPL06_REG_CHIP_ID 0x0D // Chip ID Register
#define SPL06_REG_CALIB_COEFFS_START 0x10
#define SPL06_REG_CALIB_COEFFS_END 0x21
#define SPA06_REG_CALIB_COEFFS_END 0x24
// PRESSURE_CFG_REG
#define SPL06_PRES_RATE_32HZ (0x05 << 4)
// TEMPERATURE_CFG_REG
#define SPL06_TEMP_USE_EXT_SENSOR (1<<7)
#define SPL06_TEMP_RATE_32HZ (0x05 << 4)
// MODE_AND_STATUS_REG
#define SPL06_MEAS_PRESSURE (1<<0) // measure pressure
#define SPL06_MEAS_TEMPERATURE (1<<1) // measure temperature
#define SPL06_MEAS_CON_PRE_TEM 0x07
#define SPL06_MEAS_CFG_CONTINUOUS (1<<2)
#define SPL06_MEAS_CFG_PRESSURE_RDY (1<<4)
#define SPL06_MEAS_CFG_TEMPERATURE_RDY (1<<5)
#define SPL06_MEAS_CFG_SENSOR_RDY (1<<6)
#define SPL06_MEAS_CFG_COEFFS_RDY (1<<7)
// INT_AND_FIFO_CFG_REG
#define SPL06_PRESSURE_RESULT_BIT_SHIFT (1<<2) // necessary for pressure oversampling > 8
#define SPL06_TEMPERATURE_RESULT_BIT_SHIFT (1<<3) // necessary for temperature oversampling > 8
// Don't set oversampling higher than 8 or the measurement time will be higher than 20ms (timer period)
#define SPL06_PRESSURE_OVERSAMPLING 8
#define SPL06_TEMPERATURE_OVERSAMPLING 8
#define SPL06_OVERSAMPLING_TO_REG_VALUE(n) (ffs(n)-1)
#define SPL06_BACKGROUND_SAMPLE_RATE 32
// enable Background Mode for continuous measurement
#ifndef AP_BARO_SPL06_BACKGROUND_ENABLE
#define AP_BARO_SPL06_BACKGROUND_ENABLE 0
#endif
AP_Baro_SPL06::AP_Baro_SPL06(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> dev)
: AP_Baro_Backend(baro)
, _dev(std::move(dev))
{
}
AP_Baro_Backend *AP_Baro_SPL06::probe(AP_Baro &baro,
AP_HAL::OwnPtr<AP_HAL::Device> dev)
{
if (!dev) {
return nullptr;
}
if (dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
dev->set_read_flag(0x80);
}
AP_Baro_SPL06 *sensor = NEW_NOTHROW AP_Baro_SPL06(baro, std::move(dev));
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Baro_SPL06::_init()
{
if (!_dev) {
return false;
}
WITH_SEMAPHORE(_dev->get_semaphore());
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
uint8_t whoami;
// Sometimes SPL06 has init problems, that's due to failure of reading using SPI for the first time. The SPL06 is a dual
// protocol sensor(I2C and SPI), sometimes it takes one SPI operation to convert it to SPI mode after it starts up.
for (uint8_t i=0; i<5; i++) {
if (_dev->read_registers(SPL06_REG_CHIP_ID, &whoami, 1)) {
switch(whoami) {
case SPL06_CHIP_ID:
type = Type::SPL06;
break;
case SPA06_CHIP_ID:
type = Type::SPA06;
break;
default:
type = Type::UNKNOWN;
break;
}
}
if (type != Type::UNKNOWN)
break;
}
if (type == Type::UNKNOWN) {
return false;
}
// read the calibration data
uint8_t SPL06_CALIB_COEFFS_LEN = 18;
switch(type) {
case Type::SPL06:
SPL06_CALIB_COEFFS_LEN = SPL06_REG_CALIB_COEFFS_END - SPL06_REG_CALIB_COEFFS_START + 1;
break;
case Type::SPA06:
SPL06_CALIB_COEFFS_LEN = SPA06_REG_CALIB_COEFFS_END - SPL06_REG_CALIB_COEFFS_START + 1;
break;
default:
break;
}
uint8_t buf[SPL06_CALIB_COEFFS_LEN];
_dev->read_registers(SPL06_REG_CALIB_COEFFS_START, buf, sizeof(buf));
_c0 = (buf[0] & 0x80 ? 0xF000 : 0) | ((uint16_t)buf[0] << 4) | (((uint16_t)buf[1] & 0xF0) >> 4);
_c1 = ((buf[1] & 0x8 ? 0xF000 : 0) | ((uint16_t)buf[1] & 0x0F) << 8) | (uint16_t)buf[2];
_c00 = (buf[3] & 0x80 ? 0xFFF00000 : 0) | ((uint32_t)buf[3] << 12) | ((uint32_t)buf[4] << 4) | (((uint32_t)buf[5] & 0xF0) >> 4);
_c10 = (buf[5] & 0x8 ? 0xFFF00000 : 0) | (((uint32_t)buf[5] & 0x0F) << 16) | ((uint32_t)buf[6] << 8) | (uint32_t)buf[7];
_c01 = ((uint16_t)buf[8] << 8) | ((uint16_t)buf[9]);
_c11 = ((uint16_t)buf[10] << 8) | (uint16_t)buf[11];
_c20 = ((uint16_t)buf[12] << 8) | (uint16_t)buf[13];
_c21 = ((uint16_t)buf[14] << 8) | (uint16_t)buf[15];
_c30 = ((uint16_t)buf[16] << 8) | (uint16_t)buf[17];
if(type == Type::SPA06) {
_c31 = (buf[18] & 0x80 ? 0xF000 : 0) | ((uint16_t)buf[18] << 4) | (((uint16_t)buf[19] & 0xF0) >> 4);
_c40 = ((buf[19] & 0x8 ? 0xF000 : 0) | ((uint16_t)buf[19] & 0x0F) << 8) | (uint16_t)buf[20];
}
// setup temperature and pressure measurements
_dev->setup_checked_registers(3, 20);
#if AP_BARO_SPL06_BACKGROUND_ENABLE
//set rate and oversampling
_dev->write_register(SPL06_REG_TEMPERATURE_CFG, SPL06_TEMP_RATE_32HZ | SPL06_OVERSAMPLING_TO_REG_VALUE(SPL06_TEMPERATURE_OVERSAMPLING), true);
_dev->write_register(SPL06_REG_PRESSURE_CFG, SPL06_PRES_RATE_32HZ | SPL06_OVERSAMPLING_TO_REG_VALUE(SPL06_PRESSURE_OVERSAMPLING), true);
//enable background mode
_dev->write_register(SPL06_REG_MODE_AND_STATUS, SPL06_MEAS_CON_PRE_TEM, true);
#else
_dev->write_register(SPL06_REG_TEMPERATURE_CFG, SPL06_TEMP_USE_EXT_SENSOR | SPL06_OVERSAMPLING_TO_REG_VALUE(SPL06_TEMPERATURE_OVERSAMPLING), true);
_dev->write_register(SPL06_REG_PRESSURE_CFG, SPL06_OVERSAMPLING_TO_REG_VALUE(SPL06_PRESSURE_OVERSAMPLING), true);
#endif //AP_BARO_SPL06_BACKGROUND_ENABLE
uint8_t int_and_fifo_reg_value = 0;
if (SPL06_TEMPERATURE_OVERSAMPLING > 8) {
int_and_fifo_reg_value |= SPL06_TEMPERATURE_RESULT_BIT_SHIFT;
}
if (SPL06_PRESSURE_OVERSAMPLING > 8) {
int_and_fifo_reg_value |= SPL06_PRESSURE_RESULT_BIT_SHIFT;
}
_dev->write_register(SPL06_REG_INT_AND_FIFO_CFG, int_and_fifo_reg_value, true);
_instance = _frontend.register_sensor();
_dev->set_device_type(DEVTYPE_BARO_SPL06);
set_bus_id(_instance, _dev->get_bus_id());
// request 50Hz update
_timer_counter = -1;
#if AP_BARO_SPL06_BACKGROUND_ENABLE
_dev->register_periodic_callback(1000000/SPL06_BACKGROUND_SAMPLE_RATE, FUNCTOR_BIND_MEMBER(&AP_Baro_SPL06::_timer, void));
#else
_dev->register_periodic_callback(20 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_SPL06::_timer, void));
#endif //AP_BARO_SPL06_BACKGROUND_ENABLE
return true;
}
int32_t AP_Baro_SPL06::raw_value_scale_factor(uint8_t oversampling)
{
// From the datasheet page 13
switch(oversampling)
{
case 1: return 524288;
case 2: return 1572864;
case 4: return 3670016;
case 8: return 7864320;
case 16: return 253952;
case 32: return 516096;
case 64: return 1040384;
case 128: return 2088960;
default: return -1; // invalid
}
}
// accumulate a new sensor reading
void AP_Baro_SPL06::_timer(void)
{
uint8_t buf[3];
#if AP_BARO_SPL06_BACKGROUND_ENABLE
_dev->read_registers(SPL06_REG_TEMPERATURE_START, buf, sizeof(buf));
_update_temperature((int32_t)((buf[0] & 0x80 ? 0xFF000000 : 0) | ((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | buf[2]));
_dev->read_registers(SPL06_REG_PRESSURE_START, buf, sizeof(buf));
_update_pressure((int32_t)((buf[0] & 0x80 ? 0xFF000000 : 0) | ((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | buf[2]));
#else
//command mode
if ((_timer_counter == -1) || (_timer_counter == 49)) {
// First call and every second start a temperature measurement (50Hz call)
_dev->write_register(SPL06_REG_MODE_AND_STATUS, SPL06_MEAS_TEMPERATURE, false);
_timer_counter = 0; // Next cycle we are reading the temperature
} else if (_timer_counter == 0) {
// A temperature measurement had been started during the previous call
_dev->read_registers(SPL06_REG_TEMPERATURE_START, buf, sizeof(buf));
_update_temperature((int32_t)((buf[0] & 0x80 ? 0xFF000000 : 0) | ((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | buf[2]));
_dev->write_register(SPL06_REG_MODE_AND_STATUS, SPL06_MEAS_PRESSURE, false);
_timer_counter += 1;
} else {
// The rest of the time read the latest pressure and start a new measurement
_dev->read_registers(SPL06_REG_PRESSURE_START, buf, sizeof(buf));
_update_pressure((int32_t)((buf[0] & 0x80 ? 0xFF000000 : 0) | ((uint32_t)buf[0] << 16) | ((uint32_t)buf[1] << 8) | buf[2]));
_dev->write_register(SPL06_REG_MODE_AND_STATUS, SPL06_MEAS_PRESSURE, false);
_timer_counter += 1;
}
#endif //AP_BARO_SPL06_BACKGROUND_ENABLE
_dev->check_next_register();
}
// transfer data to the frontend
void AP_Baro_SPL06::update(void)
{
WITH_SEMAPHORE(_sem);
if (_pressure_count == 0) {
return;
}
_copy_to_frontend(_instance, _pressure_sum/_pressure_count, _temperature);
_pressure_sum = 0;
_pressure_count = 0;
}
// calculate temperature
void AP_Baro_SPL06::_update_temperature(int32_t temp_raw)
{
_temp_raw = (float)temp_raw / raw_value_scale_factor(SPL06_TEMPERATURE_OVERSAMPLING);
const float temp_comp = (float)_c0 / 2 + _temp_raw * _c1;
WITH_SEMAPHORE(_sem);
_temperature = temp_comp;
}
// calculate pressure
void AP_Baro_SPL06::_update_pressure(int32_t press_raw)
{
const float press_raw_sc = (float)press_raw / raw_value_scale_factor(SPL06_PRESSURE_OVERSAMPLING);
float pressure_cal = 0;
float press_temp_comp = 0;
switch(type) {
case Type::SPL06:
pressure_cal = (float)_c00 + press_raw_sc * ((float)_c10 + press_raw_sc * ((float)_c20 + press_raw_sc * _c30));
press_temp_comp = _temp_raw * ((float)_c01 + press_raw_sc * ((float)_c11 + press_raw_sc * _c21));
break;
case Type::SPA06:
pressure_cal = (float)_c00 + press_raw_sc * ((float)_c10 + press_raw_sc * ((float)_c20 + press_raw_sc * ((float)_c30 + press_raw_sc * _c40)));
press_temp_comp = _temp_raw * ((float)_c01 + press_raw_sc * ((float)_c11 + press_raw_sc * ((float)_c21) + press_raw_sc * _c31));
break;
default:
break;
}
const float press_comp = pressure_cal + press_temp_comp;
if (!pressure_ok(press_comp)) {
return;
}
WITH_SEMAPHORE(_sem);
_pressure_sum += press_comp;
_pressure_count++;
}
#endif // AP_BARO_SPL06_ENABLED