ardupilot/libraries/AP_Baro/AP_Baro.h

362 lines
14 KiB
C++

#pragma once
#include "AP_Baro_config.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Param/AP_Param.h>
#include <AP_Math/AP_Math.h>
#include <Filter/DerivativeFilter.h>
#include <AP_MSP/msp.h>
#include <AP_ExternalAHRS/AP_ExternalAHRS.h>
// maximum number of sensor instances
#ifndef BARO_MAX_INSTANCES
#define BARO_MAX_INSTANCES 3
#endif
// maximum number of drivers. Note that a single driver can provide
// multiple sensor instances
#define BARO_MAX_DRIVERS 3
// timeouts for health reporting
#define BARO_TIMEOUT_MS 500 // timeout in ms since last successful read
#define BARO_DATA_CHANGE_TIMEOUT_MS 2000 // timeout in ms since last successful read that involved temperature of pressure changing
class AP_Baro_Backend;
class AP_Baro
{
friend class AP_Baro_Backend;
friend class AP_Baro_SITL; // for access to sensors[]
friend class AP_Baro_DroneCAN; // for access to sensors[]
public:
AP_Baro();
/* Do not allow copies */
CLASS_NO_COPY(AP_Baro);
// get singleton
static AP_Baro *get_singleton(void) {
return _singleton;
}
// barometer types
typedef enum {
BARO_TYPE_AIR,
BARO_TYPE_WATER
} baro_type_t;
// initialise the barometer object, loading backend drivers
void init(void);
// update the barometer object, asking backends to push data to
// the frontend
void update(void);
// healthy - returns true if sensor and derived altitude are good
bool healthy(void) const { return healthy(_primary); }
bool healthy(uint8_t instance) const;
// check if all baros are healthy - used for SYS_STATUS report
bool all_healthy(void) const;
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message
bool arming_checks(size_t buflen, char *buffer) const;
// get primary sensor
uint8_t get_primary(void) const { return _primary; }
// pressure in Pascal. Divide by 100 for millibars or hectopascals
float get_pressure(void) const { return get_pressure(_primary); }
float get_pressure(uint8_t instance) const { return sensors[instance].pressure; }
#if HAL_BARO_WIND_COMP_ENABLED
// dynamic pressure in Pascal. Divide by 100 for millibars or hectopascals
const Vector3f& get_dynamic_pressure(uint8_t instance) const { return sensors[instance].dynamic_pressure; }
#endif
// temperature in degrees C
float get_temperature(void) const { return get_temperature(_primary); }
float get_temperature(uint8_t instance) const { return sensors[instance].temperature; }
// get pressure correction in Pascal. Divide by 100 for millibars or hectopascals
float get_pressure_correction(void) const { return get_pressure_correction(_primary); }
float get_pressure_correction(uint8_t instance) const { return sensors[instance].p_correction; }
// calibrate the barometer. This must be called on startup if the
// altitude/climb_rate/acceleration interfaces are ever used
void calibrate(bool save=true);
// update the barometer calibration to the current pressure. Can
// be used for incremental preflight update of baro
void update_calibration(void);
// get current altitude in meters relative to altitude at the time
// of the last calibrate() call
float get_altitude(void) const { return get_altitude(_primary); }
float get_altitude(uint8_t instance) const { return sensors[instance].altitude; }
// get altitude above mean sea level
float get_altitude_AMSL(uint8_t instance) const { return get_altitude(instance) + _field_elevation_active; }
float get_altitude_AMSL(void) const { return get_altitude_AMSL(_primary); }
// returns which i2c bus is considered "the" external bus
uint8_t external_bus() const { return _ext_bus; }
// Atmospheric Model Functions
static float geometric_alt_to_geopotential(float alt);
static float geopotential_alt_to_geometric(float alt);
float get_temperature_from_altitude(float alt) const;
float get_altitude_from_pressure(float pressure) const;
// EAS2TAS for SITL
static float get_EAS2TAS_for_alt_amsl(float alt_amsl);
#if AP_BARO_1976_STANDARD_ATMOSPHERE_ENABLED
// lookup expected pressure for a given altitude. Used for SITL backend
static void get_pressure_temperature_for_alt_amsl(float alt_amsl, float &pressure, float &temperature_K);
#endif
// lookup expected temperature in degrees C for a given altitude. Used for SITL backend
static float get_temperatureC_for_alt_amsl(const float alt_amsl);
// lookup expected pressure in Pa for a given altitude. Used for SITL backend
static float get_pressure_for_alt_amsl(const float alt_amsl);
// get air density for SITL
static float get_air_density_for_alt_amsl(float alt_amsl);
// get altitude difference in meters relative given a base
// pressure in Pascal
float get_altitude_difference(float base_pressure, float pressure) const;
// get sea level pressure relative to 1976 standard atmosphere model
// pressure in Pascal
float get_sealevel_pressure(float pressure, float altitude) const;
// get scale factor required to convert equivalent to true
// airspeed. This should only be used to update the AHRS value
// once per loop. Please use AP::ahrs().get_EAS2TAS()
float _get_EAS2TAS(void) const;
// get air density / sea level density - decreases as altitude climbs
// please use AP::ahrs()::get_air_density_ratio()
float _get_air_density_ratio(void);
// get current climb rate in meters/s. A positive number means
// going up
float get_climb_rate(void);
// ground temperature in degrees C
// the ground values are only valid after calibration
float get_ground_temperature(void) const;
// ground pressure in Pascal
// the ground values are only valid after calibration
float get_ground_pressure(void) const { return get_ground_pressure(_primary); }
float get_ground_pressure(uint8_t i) const { return sensors[i].ground_pressure.get(); }
// set the temperature to be used for altitude calibration. This
// allows an external temperature source (such as a digital
// airspeed sensor) to be used as the temperature source
void set_external_temperature(float temperature);
// get last time sample was taken (in ms)
uint32_t get_last_update(void) const { return get_last_update(_primary); }
uint32_t get_last_update(uint8_t instance) const { return sensors[instance].last_update_ms; }
// settable parameters
static const struct AP_Param::GroupInfo var_info[];
float get_external_temperature(void) const { return get_external_temperature(_primary); };
float get_external_temperature(const uint8_t instance) const;
// Set the primary baro
void set_primary_baro(uint8_t primary) { _primary_baro.set_and_save(primary); };
// Set the type (Air or Water) of a particular instance
void set_type(uint8_t instance, baro_type_t type) { sensors[instance].type = type; };
// Get the type (Air or Water) of a particular instance
baro_type_t get_type(uint8_t instance) { return sensors[instance].type; };
// register a new sensor, claiming a sensor slot. If we are out of
// slots it will panic
uint8_t register_sensor(void);
// return number of registered sensors
uint8_t num_instances(void) const { return _num_sensors; }
// set baro drift amount
void set_baro_drift_altitude(float alt) { _alt_offset.set(alt); }
// get baro drift amount
float get_baro_drift_offset(void) const { return _alt_offset_active; }
// simple underwater atmospheric model
static void SimpleUnderWaterAtmosphere(float alt, float &rho, float &delta, float &theta);
// set a pressure correction from AP_TempCalibration
void set_pressure_correction(uint8_t instance, float p_correction);
uint8_t get_filter_range() const { return _filter_range; }
// indicate which bit in LOG_BITMASK indicates baro logging enabled
void set_log_baro_bit(uint32_t bit) { _log_baro_bit = bit; }
bool should_log() const;
// allow threads to lock against baro update
HAL_Semaphore &get_semaphore(void) {
return _rsem;
}
#if AP_BARO_MSP_ENABLED
void handle_msp(const MSP::msp_baro_data_message_t &pkt);
#endif
#if AP_BARO_EXTERNALAHRS_ENABLED
void handle_external(const AP_ExternalAHRS::baro_data_message_t &pkt);
#endif
enum Options : uint16_t {
TreatMS5611AsMS5607 = (1U << 0U),
};
// check if an option is set
bool option_enabled(const Options option) const
{
return (uint16_t(_options.get()) & uint16_t(option)) != 0;
}
private:
// singleton
static AP_Baro *_singleton;
// how many drivers do we have?
uint8_t _num_drivers;
AP_Baro_Backend *drivers[BARO_MAX_DRIVERS];
// how many sensors do we have?
uint8_t _num_sensors;
// what is the primary sensor at the moment?
uint8_t _primary;
uint32_t _log_baro_bit = -1;
bool init_done;
uint8_t msp_instance_mask;
// bitmask values for GND_PROBE_EXT
enum {
PROBE_BMP085=(1<<0),
PROBE_BMP280=(1<<1),
PROBE_MS5611=(1<<2),
PROBE_MS5607=(1<<3),
PROBE_MS5637=(1<<4),
PROBE_FBM320=(1<<5),
PROBE_DPS280=(1<<6),
PROBE_LPS25H=(1<<7),
PROBE_KELLER=(1<<8),
PROBE_MS5837=(1<<9),
PROBE_BMP388=(1<<10),
PROBE_SPL06 =(1<<11),
PROBE_MSP =(1<<12),
PROBE_BMP581=(1<<13),
};
#if HAL_BARO_WIND_COMP_ENABLED
class WindCoeff {
public:
static const struct AP_Param::GroupInfo var_info[];
AP_Int8 enable; // enable compensation for this barometer
AP_Float xp; // ratio of static pressure rise to dynamic pressure when flying forwards
AP_Float xn; // ratio of static pressure rise to dynamic pressure when flying backwards
AP_Float yp; // ratio of static pressure rise to dynamic pressure when flying to the right
AP_Float yn; // ratio of static pressure rise to dynamic pressure when flying to the left
AP_Float zp; // ratio of static pressure rise to dynamic pressure when flying up
AP_Float zn; // ratio of static pressure rise to dynamic pressure when flying down
};
#endif
struct sensor {
uint32_t last_update_ms; // last update time in ms
uint32_t last_change_ms; // last update time in ms that included a change in reading from previous readings
float pressure; // pressure in Pascal
float temperature; // temperature in degrees C
float altitude; // calculated altitude
AP_Float ground_pressure;
float p_correction;
baro_type_t type; // 0 for air pressure (default), 1 for water pressure
bool healthy; // true if sensor is healthy
bool alt_ok; // true if calculated altitude is ok
bool calibrated; // true if calculated calibrated successfully
AP_Int32 bus_id;
#if HAL_BARO_WIND_COMP_ENABLED
WindCoeff wind_coeff;
Vector3f dynamic_pressure; // calculated dynamic pressure
#endif
} sensors[BARO_MAX_INSTANCES];
AP_Float _alt_offset;
float _alt_offset_active;
AP_Float _field_elevation; // field elevation in meters
float _field_elevation_active;
uint32_t _field_elevation_last_ms;
AP_Int8 _primary_baro; // primary chosen by user
AP_Int8 _ext_bus; // bus number for external barometer
float _external_temperature;
uint32_t _last_external_temperature_ms;
DerivativeFilterFloat_Size7 _climb_rate_filter;
AP_Float _specific_gravity; // the specific gravity of fluid for an ROV 1.00 for freshwater, 1.024 for salt water
AP_Float _user_ground_temperature; // user override of the ground temperature used for EAS2TAS
float _guessed_ground_temperature; // currently ground temperature estimate using our best available source
// when did we last notify the GCS of new pressure reference?
uint32_t _last_notify_ms;
// see if we already have probed a i2c driver by bus number and address
bool _have_i2c_driver(uint8_t bus_num, uint8_t address) const;
bool _add_backend(AP_Baro_Backend *backend);
void _probe_i2c_barometers(void);
AP_Int8 _filter_range; // valid value range from mean value
AP_Int32 _baro_probe_ext;
#ifndef HAL_BUILD_AP_PERIPH
AP_Float _alt_error_max;
#endif
AP_Int16 _options;
// semaphore for API access from threads
HAL_Semaphore _rsem;
#if HAL_BARO_WIND_COMP_ENABLED
/*
return pressure correction for wind based on GND_WCOEF parameters
*/
float wind_pressure_correction(uint8_t instance);
#endif
// Logging function
void Write_Baro(void);
void Write_Baro_instance(uint64_t time_us, uint8_t baro_instance);
void update_field_elevation();
// atmosphere model functions
float get_altitude_difference_extended(float base_pressure, float pressure) const;
float get_EAS2TAS_extended(float pressure) const;
static float get_temperature_by_altitude_layer(float alt, int8_t idx);
float get_altitude_difference_simple(float base_pressure, float pressure) const;
float get_EAS2TAS_simple(float altitude, float pressure) const;
};
namespace AP {
AP_Baro &baro();
};