mirror of https://github.com/ArduPilot/ardupilot
1337 lines
45 KiB
C++
1337 lines
45 KiB
C++
/*
|
|
* APM_AHRS_DCM.cpp
|
|
*
|
|
* AHRS system using DCM matrices
|
|
*
|
|
* Based on DCM code by Doug Weibel, Jordi Munoz and Jose Julio. DIYDrones.com
|
|
*
|
|
* Adapted for the general ArduPilot AHRS interface by Andrew Tridgell
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_AHRS_config.h"
|
|
|
|
#if AP_AHRS_DCM_ENABLED
|
|
|
|
#include "AP_AHRS.h"
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include <AP_GPS/AP_GPS.h>
|
|
#include <AP_Baro/AP_Baro.h>
|
|
#include <AP_Compass/AP_Compass.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <AP_Vehicle/AP_Vehicle_Type.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// this is the speed in m/s above which we first get a yaw lock with
|
|
// the GPS
|
|
#define GPS_SPEED_MIN 3
|
|
|
|
// the limit (in degrees/second) beyond which we stop integrating
|
|
// omega_I. At larger spin rates the DCM PI controller can get 'dizzy'
|
|
// which results in false gyro drift. See
|
|
// http://gentlenav.googlecode.com/files/fastRotations.pdf
|
|
#define SPIN_RATE_LIMIT 20
|
|
|
|
// reset the current gyro drift estimate
|
|
// should be called if gyro offsets are recalculated
|
|
void
|
|
AP_AHRS_DCM::reset_gyro_drift(void)
|
|
{
|
|
_omega_I.zero();
|
|
_omega_I_sum.zero();
|
|
_omega_I_sum_time = 0;
|
|
}
|
|
|
|
// run a full DCM update round
|
|
void
|
|
AP_AHRS_DCM::update()
|
|
{
|
|
AP_InertialSensor &_ins = AP::ins();
|
|
|
|
// ask the IMU how much time this sensor reading represents
|
|
const float delta_t = _ins.get_delta_time();
|
|
|
|
// if the update call took more than 0.2 seconds then discard it,
|
|
// otherwise we may move too far. This happens when arming motors
|
|
// in ArduCopter
|
|
if (delta_t > 0.2f) {
|
|
memset((void *)&_ra_sum[0], 0, sizeof(_ra_sum));
|
|
_ra_deltat = 0;
|
|
return;
|
|
}
|
|
|
|
// Integrate the DCM matrix using gyro inputs
|
|
matrix_update();
|
|
|
|
// Normalize the DCM matrix
|
|
normalize();
|
|
|
|
// Perform drift correction
|
|
drift_correction(delta_t);
|
|
|
|
// paranoid check for bad values in the DCM matrix
|
|
check_matrix();
|
|
|
|
// calculate the euler angles and DCM matrix which will be used
|
|
// for high level navigation control. Apply trim such that a
|
|
// positive trim value results in a positive vehicle rotation
|
|
// about that axis (ie a negative offset)
|
|
_body_dcm_matrix = _dcm_matrix * AP::ahrs().get_rotation_vehicle_body_to_autopilot_body();
|
|
_body_dcm_matrix.to_euler(&roll, &pitch, &yaw);
|
|
|
|
// pre-calculate some trig for CPU purposes:
|
|
_cos_yaw = cosf(yaw);
|
|
_sin_yaw = sinf(yaw);
|
|
|
|
backup_attitude();
|
|
|
|
// remember the last origin for fallback support
|
|
IGNORE_RETURN(AP::ahrs().get_origin(last_origin));
|
|
|
|
#if HAL_LOGGING_ENABLED
|
|
const uint32_t now_ms = AP_HAL::millis();
|
|
if (now_ms - last_log_ms >= 100) {
|
|
// log DCM at 10Hz
|
|
last_log_ms = now_ms;
|
|
|
|
// @LoggerMessage: DCM
|
|
// @Description: DCM Estimator Data
|
|
// @Field: TimeUS: Time since system startup
|
|
// @Field: Roll: estimated roll
|
|
// @Field: Pitch: estimated pitch
|
|
// @Field: Yaw: estimated yaw
|
|
// @Field: ErrRP: lowest estimated gyro drift error
|
|
// @Field: ErrYaw: difference between measured yaw and DCM yaw estimate
|
|
// @Field: VWN: wind velocity, to-the-North component
|
|
// @Field: VWE: wind velocity, to-the-East component
|
|
// @Field: VWD: wind velocity, Up-to-Down component
|
|
AP::logger().WriteStreaming(
|
|
"DCM",
|
|
"TimeUS," "Roll," "Pitch," "Yaw," "ErrRP," "ErrYaw," "VWN," "VWE," "VWD",
|
|
"s" "d" "d" "d" "d" "h" "n" "n" "n",
|
|
"F" "0" "0" "0" "0" "0" "0" "0" "0",
|
|
"Q" "f" "f" "f" "f" "f" "f" "f" "f",
|
|
AP_HAL::micros64(),
|
|
degrees(roll),
|
|
degrees(pitch),
|
|
wrap_360(degrees(yaw)),
|
|
get_error_rp(),
|
|
get_error_yaw(),
|
|
_wind.x,
|
|
_wind.y,
|
|
_wind.z
|
|
);
|
|
}
|
|
#endif // HAL_LOGGING_ENABLED
|
|
}
|
|
|
|
void AP_AHRS_DCM::get_results(AP_AHRS_Backend::Estimates &results)
|
|
{
|
|
results.roll_rad = roll;
|
|
results.pitch_rad = pitch;
|
|
results.yaw_rad = yaw;
|
|
|
|
results.dcm_matrix = _body_dcm_matrix;
|
|
results.gyro_estimate = _omega;
|
|
results.gyro_drift = _omega_I;
|
|
results.accel_ef = _accel_ef;
|
|
|
|
results.location_valid = get_location(results.location);
|
|
}
|
|
|
|
/*
|
|
backup attitude to persistent_data for use in watchdog reset
|
|
*/
|
|
void AP_AHRS_DCM::backup_attitude(void)
|
|
{
|
|
AP_HAL::Util::PersistentData &pd = hal.util->persistent_data;
|
|
pd.roll_rad = roll;
|
|
pd.pitch_rad = pitch;
|
|
pd.yaw_rad = yaw;
|
|
}
|
|
|
|
// update the DCM matrix using only the gyros
|
|
void AP_AHRS_DCM::matrix_update(void)
|
|
{
|
|
// use only the primary gyro so our bias estimate is valid, allowing us to return the right filtered gyro
|
|
// for rate controllers
|
|
const auto &_ins = AP::ins();
|
|
Vector3f delta_angle;
|
|
float dangle_dt;
|
|
if (_ins.get_delta_angle(delta_angle, dangle_dt) && dangle_dt > 0) {
|
|
_omega = delta_angle / dangle_dt;
|
|
_omega += _omega_I;
|
|
_dcm_matrix.rotate((_omega + _omega_P + _omega_yaw_P) * dangle_dt);
|
|
}
|
|
|
|
// now update _omega from the filtered value from the primary IMU. We need to use
|
|
// the primary IMU as the notch filters will only be running on one IMU
|
|
|
|
// note that we do not include the P terms in _omega. This is
|
|
// because the spin_rate is calculated from _omega.length(),
|
|
// and including the P terms would give positive feedback into
|
|
// the _P_gain() calculation, which can lead to a very large P
|
|
// value
|
|
_omega = _ins.get_gyro() + _omega_I;
|
|
}
|
|
|
|
|
|
/*
|
|
* reset the DCM matrix and omega. Used on ground start, and on
|
|
* extreme errors in the matrix
|
|
*/
|
|
void
|
|
AP_AHRS_DCM::reset(bool recover_eulers)
|
|
{
|
|
// reset the integration terms
|
|
_omega_I.zero();
|
|
_omega_P.zero();
|
|
_omega_yaw_P.zero();
|
|
_omega.zero();
|
|
|
|
// if the caller wants us to try to recover to the current
|
|
// attitude then calculate the dcm matrix from the current
|
|
// roll/pitch/yaw values
|
|
if (hal.util->was_watchdog_reset() && AP_HAL::millis() < 10000) {
|
|
const AP_HAL::Util::PersistentData &pd = hal.util->persistent_data;
|
|
roll = pd.roll_rad;
|
|
pitch = pd.pitch_rad;
|
|
yaw = pd.yaw_rad;
|
|
_dcm_matrix.from_euler(roll, pitch, yaw);
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Restored watchdog attitude %.0f %.0f %.0f",
|
|
degrees(roll), degrees(pitch), degrees(yaw));
|
|
} else if (recover_eulers && !isnan(roll) && !isnan(pitch) && !isnan(yaw)) {
|
|
_dcm_matrix.from_euler(roll, pitch, yaw);
|
|
} else {
|
|
|
|
// Use the measured accel due to gravity to calculate an initial
|
|
// roll and pitch estimate
|
|
|
|
AP_InertialSensor &_ins = AP::ins();
|
|
|
|
// Get body frame accel vector
|
|
Vector3f initAccVec = _ins.get_accel();
|
|
uint8_t counter = 0;
|
|
|
|
// the first vector may be invalid as the filter starts up
|
|
while ((initAccVec.length() < 9.0f || initAccVec.length() > 11) && counter++ < 20) {
|
|
_ins.wait_for_sample();
|
|
_ins.update();
|
|
initAccVec = _ins.get_accel();
|
|
}
|
|
|
|
// normalise the acceleration vector
|
|
if (initAccVec.length() > 5.0f) {
|
|
// calculate initial pitch angle
|
|
pitch = atan2f(initAccVec.x, norm(initAccVec.y, initAccVec.z));
|
|
// calculate initial roll angle
|
|
roll = atan2f(-initAccVec.y, -initAccVec.z);
|
|
} else {
|
|
// If we can't use the accel vector, then align flat
|
|
roll = 0.0f;
|
|
pitch = 0.0f;
|
|
}
|
|
_dcm_matrix.from_euler(roll, pitch, 0);
|
|
|
|
}
|
|
|
|
// pre-calculate some trig for CPU purposes:
|
|
_cos_yaw = cosf(yaw);
|
|
_sin_yaw = sinf(yaw);
|
|
|
|
_last_startup_ms = AP_HAL::millis();
|
|
}
|
|
|
|
/*
|
|
* check the DCM matrix for pathological values
|
|
*/
|
|
void
|
|
AP_AHRS_DCM::check_matrix(void)
|
|
{
|
|
if (_dcm_matrix.is_nan()) {
|
|
//Serial.printf("ERROR: DCM matrix NAN\n");
|
|
AP_AHRS_DCM::reset(true);
|
|
return;
|
|
}
|
|
// some DCM matrix values can lead to an out of range error in
|
|
// the pitch calculation via asin(). These NaN values can
|
|
// feed back into the rest of the DCM matrix via the
|
|
// error_course value.
|
|
if (!(_dcm_matrix.c.x < 1.0f &&
|
|
_dcm_matrix.c.x > -1.0f)) {
|
|
// We have an invalid matrix. Force a normalisation.
|
|
normalize();
|
|
|
|
if (_dcm_matrix.is_nan() ||
|
|
fabsf(_dcm_matrix.c.x) > 10.0) {
|
|
// See Issue #20284: regarding the selection of 10.0 for DCM reset
|
|
// This won't be lowered without evidence of an issue or mathematical proof & testing of a lower bound
|
|
|
|
// normalisation didn't fix the problem! We're
|
|
// in real trouble. All we can do is reset
|
|
//Serial.printf("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
|
|
// _dcm_matrix.c.x);
|
|
AP_AHRS_DCM::reset(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// renormalise one vector component of the DCM matrix
|
|
// this will return false if renormalization fails
|
|
bool
|
|
AP_AHRS_DCM::renorm(Vector3f const &a, Vector3f &result)
|
|
{
|
|
// numerical errors will slowly build up over time in DCM,
|
|
// causing inaccuracies. We can keep ahead of those errors
|
|
// using the renormalization technique from the DCM IMU paper
|
|
// (see equations 18 to 21).
|
|
|
|
// For APM we don't bother with the taylor expansion
|
|
// optimisation from the paper as on our 2560 CPU the cost of
|
|
// the sqrt() is 44 microseconds, and the small time saving of
|
|
// the taylor expansion is not worth the potential of
|
|
// additional error buildup.
|
|
|
|
// Note that we can get significant renormalisation values
|
|
// when we have a larger delta_t due to a glitch elsewhere in
|
|
// APM, such as a I2c timeout or a set of EEPROM writes. While
|
|
// we would like to avoid these if possible, if it does happen
|
|
// we don't want to compound the error by making DCM less
|
|
// accurate.
|
|
|
|
const float renorm_val = 1.0f / a.length();
|
|
|
|
// keep the average for reporting
|
|
_renorm_val_sum += renorm_val;
|
|
_renorm_val_count++;
|
|
|
|
if (!(renorm_val < 2.0f && renorm_val > 0.5f)) {
|
|
// this is larger than it should get - log it as a warning
|
|
if (!(renorm_val < 1.0e6f && renorm_val > 1.0e-6f)) {
|
|
// we are getting values which are way out of
|
|
// range, we will reset the matrix and hope we
|
|
// can recover our attitude using drift
|
|
// correction before we hit the ground!
|
|
//Serial.printf("ERROR: DCM renormalisation error. renorm_val=%f\n",
|
|
// renorm_val);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
result = a * renorm_val;
|
|
return true;
|
|
}
|
|
|
|
/*************************************************
|
|
* Direction Cosine Matrix IMU: Theory
|
|
* William Premerlani and Paul Bizard
|
|
*
|
|
* Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
|
|
* to approximations rather than identities. In effect, the axes in the two frames of reference no
|
|
* longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
|
|
* simple matter to stay ahead of it.
|
|
* We call the process of enforcing the orthogonality conditions: renormalization.
|
|
*/
|
|
void
|
|
AP_AHRS_DCM::normalize(void)
|
|
{
|
|
const float error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
|
|
|
|
const Vector3f t0 = _dcm_matrix.a - (_dcm_matrix.b * (0.5f * error)); // eq.19
|
|
const Vector3f t1 = _dcm_matrix.b - (_dcm_matrix.a * (0.5f * error)); // eq.19
|
|
const Vector3f t2 = t0 % t1; // c= a x b // eq.20
|
|
|
|
if (!renorm(t0, _dcm_matrix.a) ||
|
|
!renorm(t1, _dcm_matrix.b) ||
|
|
!renorm(t2, _dcm_matrix.c)) {
|
|
// Our solution is blowing up and we will force back
|
|
// to last euler angles
|
|
_last_failure_ms = AP_HAL::millis();
|
|
AP_AHRS_DCM::reset(true);
|
|
}
|
|
}
|
|
|
|
|
|
// produce a yaw error value. The returned value is proportional
|
|
// to sin() of the current heading error in earth frame
|
|
float
|
|
AP_AHRS_DCM::yaw_error_compass(Compass &compass)
|
|
{
|
|
const Vector3f &mag = compass.get_field();
|
|
// get the mag vector in the earth frame
|
|
Vector2f rb = _dcm_matrix.mulXY(mag);
|
|
|
|
if (rb.length() < FLT_EPSILON) {
|
|
return 0.0f;
|
|
}
|
|
|
|
rb.normalize();
|
|
if (rb.is_inf()) {
|
|
// not a valid vector
|
|
return 0.0f;
|
|
}
|
|
|
|
// update vector holding earths magnetic field (if required)
|
|
if( !is_equal(_last_declination, compass.get_declination()) ) {
|
|
_last_declination = compass.get_declination();
|
|
_mag_earth.x = cosf(_last_declination);
|
|
_mag_earth.y = sinf(_last_declination);
|
|
}
|
|
|
|
// calculate the error term in earth frame
|
|
// calculate the Z component of the cross product of rb and _mag_earth
|
|
return rb % _mag_earth;
|
|
}
|
|
|
|
// the _P_gain raises the gain of the PI controller
|
|
// when we are spinning fast. See the fastRotations
|
|
// paper from Bill.
|
|
float
|
|
AP_AHRS_DCM::_P_gain(float spin_rate)
|
|
{
|
|
if (spin_rate < ToRad(50)) {
|
|
return 1.0f;
|
|
}
|
|
if (spin_rate > ToRad(500)) {
|
|
return 10.0f;
|
|
}
|
|
return spin_rate/ToRad(50);
|
|
}
|
|
|
|
// _yaw_gain reduces the gain of the PI controller applied to heading errors
|
|
// when observability from change of velocity is good (eg changing speed or turning)
|
|
// This reduces unwanted roll and pitch coupling due to compass errors for planes.
|
|
// High levels of noise on _accel_ef will cause the gain to drop and could lead to
|
|
// increased heading drift during straight and level flight, however some gain is
|
|
// always available. TODO check the necessity of adding adjustable acc threshold
|
|
// and/or filtering accelerations before getting magnitude
|
|
float
|
|
AP_AHRS_DCM::_yaw_gain(void) const
|
|
{
|
|
const float VdotEFmag = _accel_ef.xy().length();
|
|
|
|
if (VdotEFmag <= 4.0f) {
|
|
return 0.2f*(4.5f - VdotEFmag);
|
|
}
|
|
return 0.1f;
|
|
}
|
|
|
|
|
|
// return true if we have and should use GPS
|
|
bool AP_AHRS_DCM::have_gps(void) const
|
|
{
|
|
if (_gps_use == GPSUse::Disable || AP::gps().status() <= AP_GPS::NO_FIX) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
when we are getting the initial attitude we want faster gains so
|
|
that if the board starts upside down we quickly approach the right
|
|
attitude.
|
|
We don't want to keep those high gains for too long though as high P
|
|
gains cause slow gyro offset learning. So we keep the high gains for
|
|
a maximum of 20 seconds
|
|
*/
|
|
bool AP_AHRS_DCM::use_fast_gains(void) const
|
|
{
|
|
return !hal.util->get_soft_armed() && (AP_HAL::millis() - _last_startup_ms) < 20000U;
|
|
}
|
|
|
|
|
|
// return true if we should use the compass for yaw correction
|
|
bool AP_AHRS_DCM::use_compass(void)
|
|
{
|
|
const Compass &compass = AP::compass();
|
|
|
|
if (!compass.use_for_yaw()) {
|
|
// no compass available
|
|
return false;
|
|
}
|
|
if (!AP::ahrs().get_fly_forward() || !have_gps()) {
|
|
// we don't have any alternative to the compass
|
|
return true;
|
|
}
|
|
if (AP::gps().ground_speed() < GPS_SPEED_MIN) {
|
|
// we are not going fast enough to use the GPS
|
|
return true;
|
|
}
|
|
|
|
// if the current yaw differs from the GPS yaw by more than 45
|
|
// degrees and the estimated wind speed is less than 80% of the
|
|
// ground speed, then switch to GPS navigation. This will help
|
|
// prevent flyaways with very bad compass offsets
|
|
const float error = fabsf(wrap_180(degrees(yaw) - AP::gps().ground_course()));
|
|
if (error > 45 && _wind.length() < AP::gps().ground_speed()*0.8f) {
|
|
if (AP_HAL::millis() - _last_consistent_heading > 2000) {
|
|
// start using the GPS for heading if the compass has been
|
|
// inconsistent with the GPS for 2 seconds
|
|
return false;
|
|
}
|
|
} else {
|
|
_last_consistent_heading = AP_HAL::millis();
|
|
}
|
|
|
|
// use the compass
|
|
return true;
|
|
}
|
|
|
|
// return the quaternion defining the rotation from NED to XYZ (body) axes
|
|
bool AP_AHRS_DCM::get_quaternion(Quaternion &quat) const
|
|
{
|
|
quat.from_rotation_matrix(_dcm_matrix);
|
|
return true;
|
|
}
|
|
|
|
// yaw drift correction using the compass or GPS
|
|
// this function produces the _omega_yaw_P vector, and also
|
|
// contributes to the _omega_I.z long term yaw drift estimate
|
|
void
|
|
AP_AHRS_DCM::drift_correction_yaw(void)
|
|
{
|
|
bool new_value = false;
|
|
float yaw_error;
|
|
float yaw_deltat;
|
|
|
|
const AP_GPS &_gps = AP::gps();
|
|
|
|
Compass &compass = AP::compass();
|
|
|
|
#if COMPASS_CAL_ENABLED
|
|
if (compass.is_calibrating()) {
|
|
// don't do any yaw correction while calibrating
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (AP_AHRS_DCM::use_compass()) {
|
|
/*
|
|
we are using compass for yaw
|
|
*/
|
|
if (compass.last_update_usec() != _compass_last_update) {
|
|
yaw_deltat = (compass.last_update_usec() - _compass_last_update) * 1.0e-6f;
|
|
_compass_last_update = compass.last_update_usec();
|
|
// we force an additional compass read()
|
|
// here. This has the effect of throwing away
|
|
// the first compass value, which can be bad
|
|
if (!have_initial_yaw && compass.read()) {
|
|
const float heading = compass.calculate_heading(_dcm_matrix);
|
|
_dcm_matrix.from_euler(roll, pitch, heading);
|
|
_omega_yaw_P.zero();
|
|
have_initial_yaw = true;
|
|
}
|
|
new_value = true;
|
|
yaw_error = yaw_error_compass(compass);
|
|
|
|
// also update the _gps_last_update, so if we later
|
|
// disable the compass due to significant yaw error we
|
|
// don't suddenly change yaw with a reset
|
|
_gps_last_update = _gps.last_fix_time_ms();
|
|
}
|
|
} else if (AP::ahrs().get_fly_forward() && have_gps()) {
|
|
/*
|
|
we are using GPS for yaw
|
|
*/
|
|
if (_gps.last_fix_time_ms() != _gps_last_update &&
|
|
_gps.ground_speed() >= GPS_SPEED_MIN) {
|
|
yaw_deltat = (_gps.last_fix_time_ms() - _gps_last_update) * 1.0e-3f;
|
|
_gps_last_update = _gps.last_fix_time_ms();
|
|
new_value = true;
|
|
const float gps_course_rad = ToRad(_gps.ground_course());
|
|
const float yaw_error_rad = wrap_PI(gps_course_rad - yaw);
|
|
yaw_error = sinf(yaw_error_rad);
|
|
|
|
/* reset yaw to match GPS heading under any of the
|
|
following 3 conditions:
|
|
|
|
1) if we have reached GPS_SPEED_MIN and have never had
|
|
yaw information before
|
|
|
|
2) if the last time we got yaw information from the GPS
|
|
is more than 20 seconds ago, which means we may have
|
|
suffered from considerable gyro drift
|
|
|
|
3) if we are over 3*GPS_SPEED_MIN (which means 9m/s)
|
|
and our yaw error is over 60 degrees, which means very
|
|
poor yaw. This can happen on bungee launch when the
|
|
operator pulls back the plane rapidly enough then on
|
|
release the GPS heading changes very rapidly
|
|
*/
|
|
if (!have_initial_yaw ||
|
|
yaw_deltat > 20 ||
|
|
(_gps.ground_speed() >= 3*GPS_SPEED_MIN && fabsf(yaw_error_rad) >= 1.047f)) {
|
|
// reset DCM matrix based on current yaw
|
|
_dcm_matrix.from_euler(roll, pitch, gps_course_rad);
|
|
_omega_yaw_P.zero();
|
|
have_initial_yaw = true;
|
|
yaw_error = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!new_value) {
|
|
// we don't have any new yaw information
|
|
// slowly decay _omega_yaw_P to cope with loss
|
|
// of our yaw source
|
|
_omega_yaw_P *= 0.97f;
|
|
return;
|
|
}
|
|
|
|
// convert the error vector to body frame
|
|
const float error_z = _dcm_matrix.c.z * yaw_error;
|
|
|
|
// the spin rate changes the P gain, and disables the
|
|
// integration at higher rates
|
|
const float spin_rate = _omega.length();
|
|
|
|
// sanity check _kp_yaw
|
|
if (_kp_yaw < AP_AHRS_YAW_P_MIN) {
|
|
_kp_yaw.set(AP_AHRS_YAW_P_MIN);
|
|
}
|
|
|
|
// update the proportional control to drag the
|
|
// yaw back to the right value. We use a gain
|
|
// that depends on the spin rate. See the fastRotations.pdf
|
|
// paper from Bill Premerlani
|
|
// We also adjust the gain depending on the rate of change of horizontal velocity which
|
|
// is proportional to how observable the heading is from the accelerations and GPS velocity
|
|
// The acceleration derived heading will be more reliable in turns than compass or GPS
|
|
|
|
_omega_yaw_P.z = error_z * _P_gain(spin_rate) * _kp_yaw * _yaw_gain();
|
|
if (use_fast_gains()) {
|
|
_omega_yaw_P.z *= 8;
|
|
}
|
|
|
|
// don't update the drift term if we lost the yaw reference
|
|
// for more than 2 seconds
|
|
if (yaw_deltat < 2.0f && spin_rate < ToRad(SPIN_RATE_LIMIT)) {
|
|
// also add to the I term
|
|
_omega_I_sum.z += error_z * _ki_yaw * yaw_deltat;
|
|
}
|
|
|
|
_error_yaw = 0.8f * _error_yaw + 0.2f * fabsf(yaw_error);
|
|
}
|
|
|
|
|
|
/**
|
|
return an accel vector delayed by AHRS_ACCEL_DELAY samples for a
|
|
specific accelerometer instance
|
|
*/
|
|
Vector3f AP_AHRS_DCM::ra_delayed(uint8_t instance, const Vector3f &ra)
|
|
{
|
|
// get the old element, and then fill it with the new element
|
|
const Vector3f ret = _ra_delay_buffer[instance];
|
|
_ra_delay_buffer[instance] = ra;
|
|
if (ret.is_zero()) {
|
|
// use the current vector if the previous vector is exactly
|
|
// zero. This prevents an error on initialisation
|
|
return ra;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* returns true if attitude should be corrected from GPS-derived
|
|
* velocity-deltas. We turn this off for Copter and other similar
|
|
* vehicles while the vehicle is disarmed to avoid the HUD bobbing
|
|
* around while the vehicle is disarmed.
|
|
*/
|
|
bool AP_AHRS_DCM::should_correct_centrifugal() const
|
|
{
|
|
#if APM_BUILD_COPTER_OR_HELI || APM_BUILD_TYPE(APM_BUILD_ArduSub) || APM_BUILD_TYPE(APM_BUILD_Blimp)
|
|
return hal.util->get_soft_armed();
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
// perform drift correction. This function aims to update _omega_P and
|
|
// _omega_I with our best estimate of the short term and long term
|
|
// gyro error. The _omega_P value is what pulls our attitude solution
|
|
// back towards the reference vector quickly. The _omega_I term is an
|
|
// attempt to learn the long term drift rate of the gyros.
|
|
//
|
|
// This drift correction implementation is based on a paper
|
|
// by Bill Premerlani from here:
|
|
// http://gentlenav.googlecode.com/files/RollPitchDriftCompensation.pdf
|
|
void
|
|
AP_AHRS_DCM::drift_correction(float deltat)
|
|
{
|
|
Vector3f velocity;
|
|
uint32_t last_correction_time;
|
|
|
|
// perform yaw drift correction if we have a new yaw reference
|
|
// vector
|
|
drift_correction_yaw();
|
|
|
|
const AP_InertialSensor &_ins = AP::ins();
|
|
|
|
// rotate accelerometer values into the earth frame
|
|
for (uint8_t i=0; i<_ins.get_accel_count(); i++) {
|
|
if (_ins.use_accel(i)) {
|
|
/*
|
|
by using get_delta_velocity() instead of get_accel() the
|
|
accel value is sampled over the right time delta for
|
|
each sensor, which prevents an aliasing effect
|
|
*/
|
|
Vector3f delta_velocity;
|
|
float delta_velocity_dt;
|
|
_ins.get_delta_velocity(i, delta_velocity, delta_velocity_dt);
|
|
if (delta_velocity_dt > 0) {
|
|
Vector3f accel_ef = _dcm_matrix * (delta_velocity / delta_velocity_dt);
|
|
// integrate the accel vector in the earth frame between GPS readings
|
|
_ra_sum[i] += accel_ef * deltat;
|
|
}
|
|
}
|
|
}
|
|
|
|
// set _accel_ef_blended based on filtered accel
|
|
_accel_ef = _dcm_matrix * _ins.get_accel();
|
|
|
|
// keep a sum of the deltat values, so we know how much time
|
|
// we have integrated over
|
|
_ra_deltat += deltat;
|
|
|
|
const AP_GPS &_gps = AP::gps();
|
|
const bool fly_forward = AP::ahrs().get_fly_forward();
|
|
|
|
if (!have_gps() ||
|
|
_gps.status() < AP_GPS::GPS_OK_FIX_3D ||
|
|
_gps.num_sats() < _gps_minsats) {
|
|
// no GPS, or not a good lock. From experience we need at
|
|
// least 6 satellites to get a really reliable velocity number
|
|
// from the GPS.
|
|
//
|
|
// As a fallback we use the fixed wing acceleration correction
|
|
// if we have an airspeed estimate (which we only have if
|
|
// _fly_forward is set), otherwise no correction
|
|
if (_ra_deltat < 0.2f) {
|
|
// not enough time has accumulated
|
|
return;
|
|
}
|
|
|
|
float airspeed_TAS = _last_airspeed_TAS;
|
|
#if AP_AIRSPEED_ENABLED
|
|
if (airspeed_sensor_enabled()) {
|
|
airspeed_TAS = AP::airspeed()->get_airspeed() * get_EAS2TAS();
|
|
}
|
|
#endif
|
|
|
|
// use airspeed to estimate our ground velocity in
|
|
// earth frame by subtracting the wind
|
|
velocity = _dcm_matrix.colx() * airspeed_TAS;
|
|
|
|
// add in wind estimate
|
|
velocity += _wind;
|
|
|
|
last_correction_time = AP_HAL::millis();
|
|
_have_gps_lock = false;
|
|
} else {
|
|
if (_gps.last_fix_time_ms() == _ra_sum_start) {
|
|
// we don't have a new GPS fix - nothing more to do
|
|
return;
|
|
}
|
|
velocity = _gps.velocity();
|
|
last_correction_time = _gps.last_fix_time_ms();
|
|
if (_have_gps_lock == false) {
|
|
// if we didn't have GPS lock in the last drift
|
|
// correction interval then set the velocities equal
|
|
_last_velocity = velocity;
|
|
}
|
|
_have_gps_lock = true;
|
|
|
|
// keep last airspeed estimate for dead-reckoning purposes
|
|
Vector3f airspeed = velocity - _wind;
|
|
|
|
// rotate vector to body frame
|
|
airspeed = _body_dcm_matrix.mul_transpose(airspeed);
|
|
|
|
// take positive component in X direction. This mimics a pitot
|
|
// tube
|
|
_last_airspeed_TAS = MAX(airspeed.x, 0);
|
|
}
|
|
|
|
if (have_gps()) {
|
|
// use GPS for positioning with any fix, even a 2D fix
|
|
_last_lat = _gps.location().lat;
|
|
_last_lng = _gps.location().lng;
|
|
_last_pos_ms = AP_HAL::millis();
|
|
_position_offset_north = 0;
|
|
_position_offset_east = 0;
|
|
|
|
// once we have a single GPS lock, we can update using
|
|
// dead-reckoning from then on
|
|
_have_position = true;
|
|
} else {
|
|
// update dead-reckoning position estimate
|
|
_position_offset_north += velocity.x * _ra_deltat;
|
|
_position_offset_east += velocity.y * _ra_deltat;
|
|
}
|
|
|
|
// see if this is our first time through - in which case we
|
|
// just setup the start times and return
|
|
if (_ra_sum_start == 0) {
|
|
_ra_sum_start = last_correction_time;
|
|
_last_velocity = velocity;
|
|
return;
|
|
}
|
|
|
|
// equation 9: get the corrected acceleration vector in earth frame. Units
|
|
// are m/s/s
|
|
Vector3f GA_e(0.0f, 0.0f, -1.0f);
|
|
|
|
if (_ra_deltat <= 0) {
|
|
// waiting for more data
|
|
return;
|
|
}
|
|
|
|
bool using_gps_corrections = false;
|
|
float ra_scale = 1.0f/(_ra_deltat*GRAVITY_MSS);
|
|
|
|
if (should_correct_centrifugal() && (_have_gps_lock || fly_forward)) {
|
|
const float v_scale = gps_gain.get() * ra_scale;
|
|
const Vector3f vdelta = (velocity - _last_velocity) * v_scale;
|
|
GA_e += vdelta;
|
|
GA_e.normalize();
|
|
if (GA_e.is_inf()) {
|
|
// wait for some non-zero acceleration information
|
|
_last_failure_ms = AP_HAL::millis();
|
|
return;
|
|
}
|
|
using_gps_corrections = true;
|
|
}
|
|
|
|
// calculate the error term in earth frame.
|
|
// we do this for each available accelerometer then pick the
|
|
// accelerometer that leads to the smallest error term. This takes
|
|
// advantage of the different sample rates on different
|
|
// accelerometers to dramatically reduce the impact of aliasing
|
|
// due to harmonics of vibrations that match closely the sampling
|
|
// rate of our accelerometers. On the Pixhawk we have the LSM303D
|
|
// running at 800Hz and the MPU6000 running at 1kHz, by combining
|
|
// the two the effects of aliasing are greatly reduced.
|
|
Vector3f error[INS_MAX_INSTANCES];
|
|
float error_dirn[INS_MAX_INSTANCES];
|
|
Vector3f GA_b[INS_MAX_INSTANCES];
|
|
int8_t besti = -1;
|
|
float best_error = 0;
|
|
for (uint8_t i=0; i<_ins.get_accel_count(); i++) {
|
|
if (!_ins.get_accel_health(i)) {
|
|
// only use healthy sensors
|
|
continue;
|
|
}
|
|
_ra_sum[i] *= ra_scale;
|
|
|
|
// get the delayed ra_sum to match the GPS lag
|
|
if (using_gps_corrections) {
|
|
GA_b[i] = ra_delayed(i, _ra_sum[i]);
|
|
} else {
|
|
GA_b[i] = _ra_sum[i];
|
|
}
|
|
if (GA_b[i].is_zero()) {
|
|
// wait for some non-zero acceleration information
|
|
continue;
|
|
}
|
|
GA_b[i].normalize();
|
|
if (GA_b[i].is_inf()) {
|
|
// wait for some non-zero acceleration information
|
|
continue;
|
|
}
|
|
error[i] = GA_b[i] % GA_e;
|
|
// Take dot product to catch case vectors are opposite sign and parallel
|
|
error_dirn[i] = GA_b[i] * GA_e;
|
|
const float error_length = error[i].length();
|
|
if (besti == -1 || error_length < best_error) {
|
|
besti = i;
|
|
best_error = error_length;
|
|
}
|
|
// Catch case where orientation is 180 degrees out
|
|
if (error_dirn[besti] < 0.0f) {
|
|
best_error = 1.0f;
|
|
}
|
|
|
|
}
|
|
|
|
if (besti == -1) {
|
|
// no healthy accelerometers!
|
|
_last_failure_ms = AP_HAL::millis();
|
|
return;
|
|
}
|
|
|
|
_active_accel_instance = besti;
|
|
|
|
#define YAW_INDEPENDENT_DRIFT_CORRECTION 0
|
|
#if YAW_INDEPENDENT_DRIFT_CORRECTION
|
|
// step 2 calculate earth_error_Z
|
|
const float earth_error_Z = error.z;
|
|
|
|
// equation 10
|
|
const float tilt = GA_e.xy().length();
|
|
|
|
// equation 11
|
|
const float theta = atan2f(GA_b[besti].y, GA_b[besti].x);
|
|
|
|
// equation 12
|
|
const Vector3f GA_e2 = Vector3f(cosf(theta)*tilt, sinf(theta)*tilt, GA_e.z);
|
|
|
|
// step 6
|
|
error = GA_b[besti] % GA_e2;
|
|
error.z = earth_error_Z;
|
|
#endif // YAW_INDEPENDENT_DRIFT_CORRECTION
|
|
|
|
// to reduce the impact of two competing yaw controllers, we
|
|
// reduce the impact of the gps/accelerometers on yaw when we are
|
|
// flat, but still allow for yaw correction using the
|
|
// accelerometers at high roll angles as long as we have a GPS
|
|
if (AP_AHRS_DCM::use_compass()) {
|
|
if (have_gps() && is_equal(gps_gain.get(), 1.0f)) {
|
|
error[besti].z *= sinf(fabsf(roll));
|
|
} else {
|
|
error[besti].z = 0;
|
|
}
|
|
}
|
|
|
|
// if ins is unhealthy then stop attitude drift correction and
|
|
// hope the gyros are OK for a while. Just slowly reduce _omega_P
|
|
// to prevent previous bad accels from throwing us off
|
|
if (!_ins.healthy()) {
|
|
error[besti].zero();
|
|
} else {
|
|
// convert the error term to body frame
|
|
error[besti] = _dcm_matrix.mul_transpose(error[besti]);
|
|
}
|
|
|
|
if (error[besti].is_nan() || error[besti].is_inf()) {
|
|
// don't allow bad values
|
|
check_matrix();
|
|
_last_failure_ms = AP_HAL::millis();
|
|
return;
|
|
}
|
|
|
|
_error_rp = 0.8f * _error_rp + 0.2f * best_error;
|
|
|
|
// base the P gain on the spin rate
|
|
const float spin_rate = _omega.length();
|
|
|
|
// sanity check _kp value
|
|
if (_kp < AP_AHRS_RP_P_MIN) {
|
|
_kp.set(AP_AHRS_RP_P_MIN);
|
|
}
|
|
|
|
// we now want to calculate _omega_P and _omega_I. The
|
|
// _omega_P value is what drags us quickly to the
|
|
// accelerometer reading.
|
|
_omega_P = error[besti] * _P_gain(spin_rate) * _kp;
|
|
if (use_fast_gains()) {
|
|
_omega_P *= 8;
|
|
}
|
|
|
|
if (fly_forward && _gps.status() >= AP_GPS::GPS_OK_FIX_2D &&
|
|
_gps.ground_speed() < GPS_SPEED_MIN &&
|
|
_ins.get_accel().x >= 7 &&
|
|
pitch > radians(-30) && pitch < radians(30)) {
|
|
// assume we are in a launch acceleration, and reduce the
|
|
// rp gain by 50% to reduce the impact of GPS lag on
|
|
// takeoff attitude when using a catapult
|
|
_omega_P *= 0.5f;
|
|
}
|
|
|
|
// accumulate some integrator error
|
|
if (spin_rate < ToRad(SPIN_RATE_LIMIT)) {
|
|
_omega_I_sum += error[besti] * _ki * _ra_deltat;
|
|
_omega_I_sum_time += _ra_deltat;
|
|
}
|
|
|
|
if (_omega_I_sum_time >= 5) {
|
|
// limit the rate of change of omega_I to the hardware
|
|
// reported maximum gyro drift rate. This ensures that
|
|
// short term errors don't cause a buildup of omega_I
|
|
// beyond the physical limits of the device
|
|
const float change_limit = AP::ins().get_gyro_drift_rate() * _omega_I_sum_time;
|
|
_omega_I_sum.x = constrain_float(_omega_I_sum.x, -change_limit, change_limit);
|
|
_omega_I_sum.y = constrain_float(_omega_I_sum.y, -change_limit, change_limit);
|
|
_omega_I_sum.z = constrain_float(_omega_I_sum.z, -change_limit, change_limit);
|
|
_omega_I += _omega_I_sum;
|
|
_omega_I_sum.zero();
|
|
_omega_I_sum_time = 0;
|
|
}
|
|
|
|
// zero our accumulator ready for the next GPS step
|
|
memset((void *)&_ra_sum[0], 0, sizeof(_ra_sum));
|
|
_ra_deltat = 0;
|
|
_ra_sum_start = last_correction_time;
|
|
|
|
// remember the velocity for next time
|
|
_last_velocity = velocity;
|
|
}
|
|
|
|
|
|
// update our wind speed estimate
|
|
void AP_AHRS_DCM::estimate_wind(void)
|
|
{
|
|
if (!AP::ahrs().get_wind_estimation_enabled()) {
|
|
return;
|
|
}
|
|
const Vector3f &velocity = _last_velocity;
|
|
|
|
// this is based on the wind speed estimation code from MatrixPilot by
|
|
// Bill Premerlani. Adaption for ArduPilot by Jon Challinger
|
|
// See http://gentlenav.googlecode.com/files/WindEstimation.pdf
|
|
const Vector3f fuselageDirection = _dcm_matrix.colx();
|
|
const Vector3f fuselageDirectionDiff = fuselageDirection - _last_fuse;
|
|
const uint32_t now = AP_HAL::millis();
|
|
|
|
// scrap our data and start over if we're taking too long to get a direction change
|
|
if (now - _last_wind_time > 10000) {
|
|
_last_wind_time = now;
|
|
_last_fuse = fuselageDirection;
|
|
_last_vel = velocity;
|
|
return;
|
|
}
|
|
|
|
float diff_length = fuselageDirectionDiff.length();
|
|
if (diff_length > 0.2f) {
|
|
// when turning, use the attitude response to estimate
|
|
// wind speed
|
|
const Vector3f velocityDiff = velocity - _last_vel;
|
|
|
|
// estimate airspeed it using equation 6
|
|
const float V = velocityDiff.length() / diff_length;
|
|
|
|
const Vector3f fuselageDirectionSum = fuselageDirection + _last_fuse;
|
|
const Vector3f velocitySum = velocity + _last_vel;
|
|
|
|
_last_fuse = fuselageDirection;
|
|
_last_vel = velocity;
|
|
|
|
const float theta = atan2f(velocityDiff.y, velocityDiff.x) - atan2f(fuselageDirectionDiff.y, fuselageDirectionDiff.x);
|
|
const float sintheta = sinf(theta);
|
|
const float costheta = cosf(theta);
|
|
|
|
Vector3f wind{
|
|
velocitySum.x - V * (costheta * fuselageDirectionSum.x - sintheta * fuselageDirectionSum.y),
|
|
velocitySum.y - V * (sintheta * fuselageDirectionSum.x + costheta * fuselageDirectionSum.y),
|
|
velocitySum.z - V * fuselageDirectionSum.z
|
|
};
|
|
wind *= 0.5f;
|
|
|
|
if (wind.length() < _wind.length() + 20) {
|
|
_wind = _wind * 0.95f + wind * 0.05f;
|
|
}
|
|
|
|
_last_wind_time = now;
|
|
|
|
return;
|
|
}
|
|
|
|
#if AP_AIRSPEED_ENABLED
|
|
if (now - _last_wind_time > 2000 && airspeed_sensor_enabled()) {
|
|
// when flying straight use airspeed to get wind estimate if available
|
|
const Vector3f airspeed = _dcm_matrix.colx() * AP::airspeed()->get_airspeed();
|
|
const Vector3f wind = velocity - (airspeed * get_EAS2TAS());
|
|
_wind = _wind * 0.92f + wind * 0.08f;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef AP_AHRS_EXTERNAL_WIND_ESTIMATE_ENABLED
|
|
void AP_AHRS_DCM::set_external_wind_estimate(float speed, float direction) {
|
|
_wind.x = -cosf(radians(direction)) * speed;
|
|
_wind.y = -sinf(radians(direction)) * speed;
|
|
_wind.z = 0;
|
|
}
|
|
#endif
|
|
|
|
// return our current position estimate using
|
|
// dead-reckoning or GPS
|
|
bool AP_AHRS_DCM::get_location(Location &loc) const
|
|
{
|
|
loc.lat = _last_lat;
|
|
loc.lng = _last_lng;
|
|
const auto &baro = AP::baro();
|
|
const auto &gps = AP::gps();
|
|
if (_gps_use == GPSUse::EnableWithHeight &&
|
|
gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
loc.alt = gps.location().alt;
|
|
} else {
|
|
loc.alt = baro.get_altitude() * 100 + AP::ahrs().get_home().alt;
|
|
}
|
|
loc.relative_alt = 0;
|
|
loc.terrain_alt = 0;
|
|
loc.offset(_position_offset_north, _position_offset_east);
|
|
if (_have_position) {
|
|
const uint32_t now = AP_HAL::millis();
|
|
float dt = 0;
|
|
gps.get_lag(dt);
|
|
dt += constrain_float((now - _last_pos_ms) * 0.001, 0, 0.5);
|
|
Vector2f dpos = _last_velocity.xy() * dt;
|
|
loc.offset(dpos.x, dpos.y);
|
|
}
|
|
return _have_position;
|
|
}
|
|
|
|
bool AP_AHRS_DCM::airspeed_EAS(float &airspeed_ret) const
|
|
{
|
|
#if AP_AIRSPEED_ENABLED
|
|
const auto *airspeed = AP::airspeed();
|
|
if (airspeed != nullptr) {
|
|
return airspeed_EAS(airspeed->get_primary(), airspeed_ret);
|
|
}
|
|
#endif
|
|
// airspeed_estimate will also make this nullptr check and act
|
|
// appropriately when we call it with a dummy sensor ID.
|
|
return airspeed_EAS(0, airspeed_ret);
|
|
}
|
|
|
|
// return an (equivalent) airspeed estimate:
|
|
// - from a real sensor if available
|
|
// - otherwise from a GPS-derived wind-triangle estimate (if GPS available)
|
|
// - otherwise from a cached wind-triangle estimate value (but returning false)
|
|
bool AP_AHRS_DCM::airspeed_EAS(uint8_t airspeed_index, float &airspeed_ret) const
|
|
{
|
|
// airspeed_ret: will always be filled-in by get_unconstrained_airspeed_EAS which fills in airspeed_ret in this order:
|
|
// airspeed as filled-in by an enabled airspeed sensor
|
|
// if no airspeed sensor: airspeed estimated using the GPS speed & wind_speed_estimation
|
|
// Or if none of the above, fills-in using the previous airspeed estimate
|
|
// Return false: if we are using the previous airspeed estimate
|
|
if (!get_unconstrained_airspeed_EAS(airspeed_index, airspeed_ret)) {
|
|
return false;
|
|
}
|
|
|
|
const float _wind_max = AP::ahrs().get_max_wind();
|
|
if (_wind_max > 0 && AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D) {
|
|
// constrain the airspeed by the ground speed
|
|
// and AHRS_WIND_MAX
|
|
const float gnd_speed = AP::gps().ground_speed();
|
|
float true_airspeed = airspeed_ret * get_EAS2TAS();
|
|
true_airspeed = constrain_float(true_airspeed,
|
|
gnd_speed - _wind_max,
|
|
gnd_speed + _wind_max);
|
|
airspeed_ret = true_airspeed / get_EAS2TAS();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// airspeed_ret: will always be filled-in by get_unconstrained_airspeed_EAS which fills in airspeed_ret in this order:
|
|
// airspeed as filled-in by an enabled airspeed sensor
|
|
// if no airspeed sensor: airspeed estimated using the GPS speed & wind_speed_estimation
|
|
// Or if none of the above, fills-in using the previous airspeed estimate
|
|
// Return false: if we are using the previous airspeed estimate
|
|
bool AP_AHRS_DCM::get_unconstrained_airspeed_EAS(uint8_t airspeed_index, float &airspeed_ret) const
|
|
{
|
|
#if AP_AIRSPEED_ENABLED
|
|
if (airspeed_sensor_enabled(airspeed_index)) {
|
|
airspeed_ret = AP::airspeed()->get_airspeed(airspeed_index);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
if (AP::ahrs().get_wind_estimation_enabled() && have_gps()) {
|
|
// estimated via GPS speed and wind
|
|
airspeed_ret = _last_airspeed_TAS * get_TAS2EAS();
|
|
return true;
|
|
}
|
|
|
|
// Else give the last estimate, but return false.
|
|
// This is used by the dead-reckoning code
|
|
airspeed_ret = _last_airspeed_TAS * get_TAS2EAS();
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
check if the AHRS subsystem is healthy
|
|
*/
|
|
bool AP_AHRS_DCM::healthy(void) const
|
|
{
|
|
// consider ourselves healthy if there have been no failures for 5 seconds
|
|
return (_last_failure_ms == 0 || AP_HAL::millis() - _last_failure_ms > 5000);
|
|
}
|
|
|
|
/*
|
|
return NED velocity if we have GPS lock
|
|
*/
|
|
bool AP_AHRS_DCM::get_velocity_NED(Vector3f &vec) const
|
|
{
|
|
const AP_GPS &_gps = AP::gps();
|
|
if (_gps.status() < AP_GPS::GPS_OK_FIX_3D) {
|
|
return false;
|
|
}
|
|
vec = _gps.velocity();
|
|
return true;
|
|
}
|
|
|
|
// return a ground speed estimate in m/s
|
|
Vector2f AP_AHRS_DCM::groundspeed_vector(void)
|
|
{
|
|
// Generate estimate of ground speed vector using air data system
|
|
Vector2f gndVelADS;
|
|
Vector2f gndVelGPS;
|
|
float airspeed = 0;
|
|
const bool gotAirspeed = airspeed_TAS(airspeed);
|
|
const bool gotGPS = (AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D);
|
|
if (gotAirspeed) {
|
|
const Vector2f airspeed_vector{_cos_yaw * airspeed, _sin_yaw * airspeed};
|
|
Vector3f wind;
|
|
UNUSED_RESULT(wind_estimate(wind));
|
|
gndVelADS = airspeed_vector + wind.xy();
|
|
}
|
|
|
|
// Generate estimate of ground speed vector using GPS
|
|
if (gotGPS) {
|
|
const float cog = radians(AP::gps().ground_course());
|
|
gndVelGPS = Vector2f(cosf(cog), sinf(cog)) * AP::gps().ground_speed();
|
|
}
|
|
// If both ADS and GPS data is available, apply a complementary filter
|
|
if (gotAirspeed && gotGPS) {
|
|
// The LPF is applied to the GPS and the HPF is applied to the air data estimate
|
|
// before the two are summed
|
|
//Define filter coefficients
|
|
// alpha and beta must sum to one
|
|
// beta = dt/Tau, where
|
|
// dt = filter time step (0.1 sec if called by nav loop)
|
|
// Tau = cross-over time constant (nominal 2 seconds)
|
|
// More lag on GPS requires Tau to be bigger, less lag allows it to be smaller
|
|
// To-Do - set Tau as a function of GPS lag.
|
|
const float alpha = 1.0f - beta;
|
|
// Run LP filters
|
|
_lp = gndVelGPS * beta + _lp * alpha;
|
|
// Run HP filters
|
|
_hp = (gndVelADS - _lastGndVelADS) + _hp * alpha;
|
|
// Save the current ADS ground vector for the next time step
|
|
_lastGndVelADS = gndVelADS;
|
|
// Sum the HP and LP filter outputs
|
|
return _hp + _lp;
|
|
}
|
|
// Only ADS data is available return ADS estimate
|
|
if (gotAirspeed && !gotGPS) {
|
|
return gndVelADS;
|
|
}
|
|
// Only GPS data is available so return GPS estimate
|
|
if (!gotAirspeed && gotGPS) {
|
|
return gndVelGPS;
|
|
}
|
|
|
|
if (airspeed > 0) {
|
|
// we have a rough airspeed, and we have a yaw. For
|
|
// dead-reckoning purposes we can create a estimated
|
|
// groundspeed vector
|
|
Vector2f ret{_cos_yaw, _sin_yaw};
|
|
ret *= airspeed;
|
|
// adjust for estimated wind
|
|
Vector3f wind;
|
|
UNUSED_RESULT(wind_estimate(wind));
|
|
ret.x += wind.x;
|
|
ret.y += wind.y;
|
|
return ret;
|
|
}
|
|
|
|
return Vector2f(0.0f, 0.0f);
|
|
}
|
|
|
|
// Get a derivative of the vertical position in m/s which is kinematically consistent with the vertical position is required by some control loops.
|
|
// This is different to the vertical velocity from the EKF which is not always consistent with the vertical position due to the various errors that are being corrected for.
|
|
bool AP_AHRS_DCM::get_vert_pos_rate_D(float &velocity) const
|
|
{
|
|
Vector3f velned;
|
|
if (get_velocity_NED(velned)) {
|
|
velocity = velned.z;
|
|
return true;
|
|
} else if (AP::baro().healthy()) {
|
|
velocity = -AP::baro().get_climb_rate();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message
|
|
// requires_position should be true if horizontal position configuration should be checked (not used)
|
|
bool AP_AHRS_DCM::pre_arm_check(bool requires_position, char *failure_msg, uint8_t failure_msg_len) const
|
|
{
|
|
if (!healthy()) {
|
|
hal.util->snprintf(failure_msg, failure_msg_len, "Not healthy");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
relative-origin functions for fallback in AP_InertialNav
|
|
*/
|
|
bool AP_AHRS_DCM::get_origin(Location &ret) const
|
|
{
|
|
ret = last_origin;
|
|
if (ret.is_zero()) {
|
|
// use home if we never have had an origin
|
|
ret = AP::ahrs().get_home();
|
|
}
|
|
return !ret.is_zero();
|
|
}
|
|
|
|
bool AP_AHRS_DCM::get_relative_position_NED_origin(Vector3f &posNED) const
|
|
{
|
|
Location origin;
|
|
if (!AP_AHRS_DCM::get_origin(origin)) {
|
|
return false;
|
|
}
|
|
Location loc;
|
|
if (!AP_AHRS_DCM::get_location(loc)) {
|
|
return false;
|
|
}
|
|
posNED = origin.get_distance_NED(loc);
|
|
return true;
|
|
}
|
|
|
|
bool AP_AHRS_DCM::get_relative_position_NE_origin(Vector2f &posNE) const
|
|
{
|
|
Vector3f posNED;
|
|
if (!AP_AHRS_DCM::get_relative_position_NED_origin(posNED)) {
|
|
return false;
|
|
}
|
|
posNE = posNED.xy();
|
|
return true;
|
|
}
|
|
|
|
bool AP_AHRS_DCM::get_relative_position_D_origin(float &posD) const
|
|
{
|
|
Vector3f posNED;
|
|
if (!AP_AHRS_DCM::get_relative_position_NED_origin(posNED)) {
|
|
return false;
|
|
}
|
|
posD = posNED.z;
|
|
return true;
|
|
}
|
|
|
|
void AP_AHRS_DCM::send_ekf_status_report(GCS_MAVLINK &link) const
|
|
{
|
|
}
|
|
|
|
// return true if DCM has a yaw source available
|
|
bool AP_AHRS_DCM::yaw_source_available(void) const
|
|
{
|
|
return AP::compass().use_for_yaw();
|
|
}
|
|
|
|
void AP_AHRS_DCM::get_control_limits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
|
|
{
|
|
// lower gains in VTOL controllers when flying on DCM
|
|
ekfGndSpdLimit = 50.0;
|
|
ekfNavVelGainScaler = 0.5;
|
|
}
|
|
|
|
#endif // AP_AHRS_DCM_ENABLED
|