ardupilot/libraries/AC_WPNav/AC_WPNav.cpp

926 lines
38 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "AC_WPNav.h"
extern const AP_HAL::HAL& hal;
// maximum velocities and accelerations
#define WPNAV_WP_SPEED 1000.0f // default horizontal speed between waypoints in cm/s
#define WPNAV_WP_SPEED_MIN 10.0f // minimum horizontal speed between waypoints in cm/s
#define WPNAV_WP_RADIUS 200.0f // default waypoint radius in cm
#define WPNAV_WP_RADIUS_MIN 5.0f // minimum waypoint radius in cm
#define WPNAV_WP_SPEED_UP 250.0f // default maximum climb velocity
#define WPNAV_WP_SPEED_DOWN 150.0f // default maximum descent velocity
#define WPNAV_WP_ACCEL_Z_DEFAULT 100.0f // default vertical acceleration between waypoints in cm/s/s
const AP_Param::GroupInfo AC_WPNav::var_info[] = {
// index 0 was used for the old orientation matrix
// @Param: SPEED
// @DisplayName: Waypoint Horizontal Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain horizontally during a WP mission
// @Units: cm/s
// @Range: 10 2000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("SPEED", 0, AC_WPNav, _wp_speed_cms, WPNAV_WP_SPEED),
// @Param: RADIUS
// @DisplayName: Waypoint Radius
// @Description: Defines the distance from a waypoint, that when crossed indicates the wp has been hit.
// @Units: cm
// @Range: 5 1000
// @Increment: 1
// @User: Standard
AP_GROUPINFO("RADIUS", 1, AC_WPNav, _wp_radius_cm, WPNAV_WP_RADIUS),
// @Param: SPEED_UP
// @DisplayName: Waypoint Climb Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while climbing during a WP mission
// @Units: cm/s
// @Range: 10 1000
// @Increment: 50
// @User: Standard
AP_GROUPINFO("SPEED_UP", 2, AC_WPNav, _wp_speed_up_cms, WPNAV_WP_SPEED_UP),
// @Param: SPEED_DN
// @DisplayName: Waypoint Descent Speed Target
// @Description: Defines the speed in cm/s which the aircraft will attempt to maintain while descending during a WP mission
// @Units: cm/s
// @Range: 10 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("SPEED_DN", 3, AC_WPNav, _wp_speed_down_cms, WPNAV_WP_SPEED_DOWN),
// @Param: ACCEL
// @DisplayName: Waypoint Acceleration
// @Description: Defines the horizontal acceleration in cm/s/s used during missions
// @Units: cm/s/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("ACCEL", 5, AC_WPNav, _wp_accel_cmss, WPNAV_ACCELERATION),
// @Param: ACCEL_Z
// @DisplayName: Waypoint Vertical Acceleration
// @Description: Defines the vertical acceleration in cm/s/s used during missions
// @Units: cm/s/s
// @Range: 50 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("ACCEL_Z", 6, AC_WPNav, _wp_accel_z_cmss, WPNAV_WP_ACCEL_Z_DEFAULT),
// @Param: RFND_USE
// @DisplayName: Waypoint missions use rangefinder for terrain following
// @Description: This controls if waypoint missions use rangefinder for terrain following
// @Values: 0:Disable,1:Enable
// @User: Advanced
AP_GROUPINFO("RFND_USE", 10, AC_WPNav, _rangefinder_use, 1),
// @Param: JERK
// @DisplayName: Waypoint Jerk
// @Description: Defines the horizontal jerk in m/s/s used during missions
// @Units: m/s/s/s
// @Range: 1 20
// @User: Standard
AP_GROUPINFO("JERK", 11, AC_WPNav, _wp_jerk, 1.0f),
// @Param: TER_MARGIN
// @DisplayName: Waypoint Terrain following altitude margin
// @Description: Waypoint Terrain following altitude margin. Vehicle will stop if distance from target altitude is larger than this margin (in meters)
// @Units: m
// @Range: 0.1 100
// @User: Advanced
AP_GROUPINFO("TER_MARGIN", 12, AC_WPNav, _terrain_margin, 10.0),
// @Param: ACCEL_C
// @DisplayName: Waypoint Cornering Acceleration
// @Description: Defines the maximum cornering acceleration in cm/s/s used during missions. If zero uses 2x accel value.
// @Units: cm/s/s
// @Range: 0 500
// @Increment: 10
// @User: Standard
AP_GROUPINFO("ACCEL_C", 13, AC_WPNav, _wp_accel_c_cmss, 0.0),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
AC_WPNav::AC_WPNav(const AP_InertialNav& inav, const AP_AHRS_View& ahrs, AC_PosControl& pos_control, const AC_AttitudeControl& attitude_control) :
_inav(inav),
_ahrs(ahrs),
_pos_control(pos_control),
_attitude_control(attitude_control)
{
AP_Param::setup_object_defaults(this, var_info);
// init flags
_flags.reached_destination = false;
_flags.fast_waypoint = false;
// initialise old WPNAV_SPEED values
_last_wp_speed_cms = _wp_speed_cms;
_last_wp_speed_up_cms = _wp_speed_up_cms;
_last_wp_speed_down_cms = get_default_speed_down();
}
// get expected source of terrain data if alt-above-terrain command is executed (used by Copter's ModeRTL)
AC_WPNav::TerrainSource AC_WPNav::get_terrain_source() const
{
// use range finder if connected
if (_rangefinder_available && _rangefinder_use) {
return AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER;
}
#if AP_TERRAIN_AVAILABLE
const AP_Terrain *terrain = AP::terrain();
if (terrain != nullptr && terrain->enabled()) {
return AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE;
} else {
return AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE;
}
#else
return AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE;
#endif
}
///
/// waypoint navigation
///
/// wp_and_spline_init - initialise straight line and spline waypoint controllers
/// speed_cms should be a positive value or left at zero to use the default speed
/// stopping_point should be the vehicle's stopping point (equal to the starting point of the next segment) if know or left as zero
/// should be called once before the waypoint controller is used but does not need to be called before subsequent updates to destination
void AC_WPNav::wp_and_spline_init(float speed_cms, Vector3f stopping_point)
{
// check _wp_radius_cm is reasonable
_wp_radius_cm.set_and_save_ifchanged(MAX(_wp_radius_cm, WPNAV_WP_RADIUS_MIN));
// check _wp_speed
_wp_speed_cms.set_and_save_ifchanged(MAX(_wp_speed_cms, WPNAV_WP_SPEED_MIN));
// initialise position controller
_pos_control.init_z_controller_stopping_point();
_pos_control.init_xy_controller_stopping_point();
// initialize the desired wp speed
_check_wp_speed_change = !is_positive(speed_cms);
_wp_desired_speed_xy_cms = is_positive(speed_cms) ? speed_cms : _wp_speed_cms;
_wp_desired_speed_xy_cms = MAX(_wp_desired_speed_xy_cms, WPNAV_WP_SPEED_MIN);
// initialise position controller speed and acceleration
_pos_control.set_max_speed_accel_xy(_wp_desired_speed_xy_cms, get_wp_acceleration());
_pos_control.set_correction_speed_accel_xy(_wp_desired_speed_xy_cms, get_wp_acceleration());
_pos_control.set_max_speed_accel_z(-get_default_speed_down(), _wp_speed_up_cms, _wp_accel_z_cmss);
_pos_control.set_correction_speed_accel_z(-get_default_speed_down(), _wp_speed_up_cms, _wp_accel_z_cmss);
// calculate scurve jerk and jerk time
if (!is_positive(_wp_jerk)) {
_wp_jerk.set(get_wp_acceleration());
}
calc_scurve_jerk_and_snap();
_scurve_prev_leg.init();
_scurve_this_leg.init();
_scurve_next_leg.init();
_track_scalar_dt = 1.0f;
_flags.reached_destination = true;
_flags.fast_waypoint = false;
// initialise origin and destination to stopping point
if (stopping_point.is_zero()) {
get_wp_stopping_point(stopping_point);
}
_origin = _destination = stopping_point;
_terrain_alt = false;
_this_leg_is_spline = false;
// initialise the terrain velocity to the current maximum velocity
_offset_vel = _wp_desired_speed_xy_cms;
_offset_accel = 0.0;
_paused = false;
// mark as active
_wp_last_update = AP_HAL::millis();
}
/// set_speed_xy - allows main code to pass target horizontal velocity for wp navigation
void AC_WPNav::set_speed_xy(float speed_cms)
{
// range check target speed and protect against divide by zero
if (speed_cms >= WPNAV_WP_SPEED_MIN && is_positive(_wp_desired_speed_xy_cms)) {
// update horizontal velocity speed offset scalar
_offset_vel = speed_cms * _offset_vel / _wp_desired_speed_xy_cms;
// initialize the desired wp speed
_wp_desired_speed_xy_cms = speed_cms;
// update position controller speed and acceleration
_pos_control.set_max_speed_accel_xy(_wp_desired_speed_xy_cms, get_wp_acceleration());
_pos_control.set_correction_speed_accel_xy(_wp_desired_speed_xy_cms, get_wp_acceleration());
// change track speed
update_track_with_speed_accel_limits();
}
}
/// set current target climb rate during wp navigation
void AC_WPNav::set_speed_up(float speed_up_cms)
{
_pos_control.set_max_speed_accel_z(_pos_control.get_max_speed_down_cms(), speed_up_cms, _pos_control.get_max_accel_z_cmss());
update_track_with_speed_accel_limits();
}
/// set current target descent rate during wp navigation
void AC_WPNav::set_speed_down(float speed_down_cms)
{
_pos_control.set_max_speed_accel_z(speed_down_cms, _pos_control.get_max_speed_up_cms(), _pos_control.get_max_accel_z_cmss());
update_track_with_speed_accel_limits();
}
/// set_wp_destination waypoint using location class
/// returns false if conversion from location to vector from ekf origin cannot be calculated
bool AC_WPNav::set_wp_destination_loc(const Location& destination)
{
bool terr_alt;
Vector3f dest_neu;
// convert destination location to vector
if (!get_vector_NEU(destination, dest_neu, terr_alt)) {
return false;
}
// set target as vector from EKF origin
return set_wp_destination(dest_neu, terr_alt);
}
/// set next destination using location class
/// returns false if conversion from location to vector from ekf origin cannot be calculated
bool AC_WPNav::set_wp_destination_next_loc(const Location& destination)
{
bool terr_alt;
Vector3f dest_neu;
// convert destination location to vector
if (!get_vector_NEU(destination, dest_neu, terr_alt)) {
return false;
}
// set target as vector from EKF origin
return set_wp_destination_next(dest_neu, terr_alt);
}
// get destination as a location. Altitude frame will be above origin or above terrain
// returns false if unable to return a destination (for example if origin has not yet been set)
bool AC_WPNav::get_wp_destination_loc(Location& destination) const
{
if (!AP::ahrs().get_origin(destination)) {
return false;
}
destination = Location{get_wp_destination(), _terrain_alt ? Location::AltFrame::ABOVE_TERRAIN : Location::AltFrame::ABOVE_ORIGIN};
return true;
}
/// set_wp_destination - set destination waypoints using position vectors (distance from ekf origin in cm)
/// terrain_alt should be true if destination.z is an altitude above terrain (false if alt-above-ekf-origin)
/// returns false on failure (likely caused by missing terrain data)
bool AC_WPNav::set_wp_destination(const Vector3f& destination, bool terrain_alt)
{
// re-initialise if previous destination has been interrupted
if (!is_active() || !_flags.reached_destination) {
wp_and_spline_init(_wp_desired_speed_xy_cms);
}
_scurve_prev_leg.init();
float origin_speed = 0.0f;
// use previous destination as origin
_origin = _destination;
if (terrain_alt == _terrain_alt) {
if (_this_leg_is_spline) {
// if previous leg was a spline we can use current target velocity vector for origin velocity vector
Vector3f curr_target_vel = _pos_control.get_vel_desired_cms();
curr_target_vel.z -= _pos_control.get_vel_offset_z_cms();
origin_speed = curr_target_vel.length();
} else {
// store previous leg
_scurve_prev_leg = _scurve_this_leg;
}
} else {
// get current alt above terrain
float origin_terr_offset;
if (!get_terrain_offset(origin_terr_offset)) {
return false;
}
// convert origin to alt-above-terrain if necessary
if (terrain_alt) {
// new destination is alt-above-terrain, previous destination was alt-above-ekf-origin
_origin.z -= origin_terr_offset;
_pos_control.init_pos_terrain_cm(origin_terr_offset);
} else {
// new destination is alt-above-ekf-origin, previous destination was alt-above-terrain
_origin.z += origin_terr_offset;
_pos_control.init_pos_terrain_cm(0.0);
}
}
// update destination
_destination = destination;
_terrain_alt = terrain_alt;
if (_flags.fast_waypoint && !_this_leg_is_spline && !_next_leg_is_spline && !_scurve_next_leg.finished()) {
_scurve_this_leg = _scurve_next_leg;
} else {
_scurve_this_leg.calculate_track(_origin, _destination,
_pos_control.get_max_speed_xy_cms(), _pos_control.get_max_speed_up_cms(), _pos_control.get_max_speed_down_cms(),
get_wp_acceleration(), _wp_accel_z_cmss,
_scurve_snap * 100.0f, _scurve_jerk * 100.0f);
if (!is_zero(origin_speed)) {
// rebuild start of scurve if we have a non-zero origin speed
_scurve_this_leg.set_origin_speed_max(origin_speed);
}
}
_this_leg_is_spline = false;
_scurve_next_leg.init();
_next_destination.zero(); // clear next destination
_flags.fast_waypoint = false; // default waypoint back to slow
_flags.reached_destination = false;
return true;
}
/// set next destination using position vector (distance from ekf origin in cm)
/// terrain_alt should be true if destination.z is a desired altitude above terrain
/// provide next_destination
bool AC_WPNav::set_wp_destination_next(const Vector3f& destination, bool terrain_alt)
{
// do not add next point if alt types don't match
if (terrain_alt != _terrain_alt) {
return true;
}
_scurve_next_leg.calculate_track(_destination, destination,
_pos_control.get_max_speed_xy_cms(), _pos_control.get_max_speed_up_cms(), _pos_control.get_max_speed_down_cms(),
get_wp_acceleration(), _wp_accel_z_cmss,
_scurve_snap * 100.0f, _scurve_jerk * 100.0);
if (_this_leg_is_spline) {
const float this_leg_dest_speed_max = _spline_this_leg.get_destination_speed_max();
const float next_leg_origin_speed_max = _scurve_next_leg.set_origin_speed_max(this_leg_dest_speed_max);
_spline_this_leg.set_destination_speed_max(next_leg_origin_speed_max);
}
_next_leg_is_spline = false;
// next destination provided so fast waypoint
_flags.fast_waypoint = true;
// record next destination
_next_destination = destination;
return true;
}
/// set waypoint destination using NED position vector from ekf origin in meters
bool AC_WPNav::set_wp_destination_NED(const Vector3f& destination_NED)
{
// convert NED to NEU and do not use terrain following
return set_wp_destination(Vector3f(destination_NED.x * 100.0f, destination_NED.y * 100.0f, -destination_NED.z * 100.0f), false);
}
/// set waypoint destination using NED position vector from ekf origin in meters
bool AC_WPNav::set_wp_destination_next_NED(const Vector3f& destination_NED)
{
// convert NED to NEU and do not use terrain following
return set_wp_destination_next(Vector3f(destination_NED.x * 100.0f, destination_NED.y * 100.0f, -destination_NED.z * 100.0f), false);
}
/// shifts the origin and destination horizontally to the current position
/// used to reset the track when taking off without horizontal position control
/// relies on set_wp_destination or set_wp_origin_and_destination having been called first
void AC_WPNav::shift_wp_origin_and_destination_to_current_pos_xy()
{
// Reset position controller to current location
_pos_control.init_xy_controller();
// get current and target locations
const Vector2f& curr_pos = _inav.get_position_xy_cm();
// shift origin and destination horizontally
_origin.xy() = curr_pos;
_destination.xy() = curr_pos;
}
/// shifts the origin and destination horizontally to the achievable stopping point
/// used to reset the track when horizontal navigation is enabled after having been disabled (see Copter's wp_navalt_min)
/// relies on set_wp_destination or set_wp_origin_and_destination having been called first
void AC_WPNav::shift_wp_origin_and_destination_to_stopping_point_xy()
{
// relax position control in xy axis
// removing velocity error also impacts stopping point calculation
_pos_control.relax_velocity_controller_xy();
// get current and target locations
Vector2f stopping_point;
get_wp_stopping_point_xy(stopping_point);
// shift origin and destination horizontally
_origin.xy() = stopping_point;
_destination.xy() = stopping_point;
// move pos controller target horizontally
_pos_control.set_pos_desired_xy_cm(stopping_point);
}
/// get_wp_stopping_point_xy - returns vector to stopping point based on a horizontal position and velocity
void AC_WPNav::get_wp_stopping_point_xy(Vector2f& stopping_point) const
{
Vector2p stop;
_pos_control.get_stopping_point_xy_cm(stop);
stopping_point = stop.tofloat();
}
/// get_wp_stopping_point - returns vector to stopping point based on 3D position and velocity
void AC_WPNav::get_wp_stopping_point(Vector3f& stopping_point) const
{
Vector3p stop;
_pos_control.get_stopping_point_xy_cm(stop.xy());
_pos_control.get_stopping_point_z_cm(stop.z);
stopping_point = stop.tofloat();
}
/// advance_wp_target_along_track - move target location along track from origin to destination
bool AC_WPNav::advance_wp_target_along_track(float dt)
{
// calculate terrain adjustments
float terr_offset = 0.0f;
if (_terrain_alt && !get_terrain_offset(terr_offset)) {
return false;
}
const float offset_z_scaler = _pos_control.pos_offset_z_scaler(terr_offset, get_terrain_margin() * 100.0);
// input shape the terrain offset
_pos_control.set_pos_terrain_target_cm(terr_offset);
// get position controller's position offset (post input shaping) so it can be used in position error calculation
const Vector3p& psc_pos_offset = _pos_control.get_pos_offset_cm();
// get current position and adjust altitude to origin and destination's frame (i.e. _frame)
Vector3f curr_pos = _inav.get_position_neu_cm() - psc_pos_offset.tofloat();
curr_pos.z -= terr_offset;
Vector3f curr_target_vel = _pos_control.get_vel_desired_cms();
curr_target_vel.z -= _pos_control.get_vel_offset_z_cms();
// Use _track_scalar_dt to slow down progression of the position target moving too far in front of aircraft
// _track_scalar_dt does not scale the velocity or acceleration
float track_scaler_dt = 1.0f;
// check target velocity is non-zero
if (is_positive(curr_target_vel.length_squared())) {
Vector3f track_direction = curr_target_vel.normalized();
const float track_error = _pos_control.get_pos_error_cm().dot(track_direction);
const float track_velocity = _inav.get_velocity_neu_cms().dot(track_direction);
// set time scaler to be consistent with the achievable aircraft speed with a 5% buffer for short term variation.
track_scaler_dt = constrain_float(0.05f + (track_velocity - _pos_control.get_pos_xy_p().kP() * track_error) / curr_target_vel.length(), 0.0f, 1.0f);
}
// Use vel_scaler_dt to slow down the trajectory time
// vel_scaler_dt scales the velocity and acceleration to be kinematically consistent
float vel_scaler_dt = 1.0;
if (is_positive(_wp_desired_speed_xy_cms)) {
update_vel_accel(_offset_vel, _offset_accel, dt, 0.0, 0.0);
const float vel_input = !_paused ? _wp_desired_speed_xy_cms * offset_z_scaler : 0.0;
shape_vel_accel(vel_input, 0.0, _offset_vel, _offset_accel, -get_wp_acceleration(), get_wp_acceleration(),
_pos_control.get_shaping_jerk_xy_cmsss(), dt, true);
vel_scaler_dt = _offset_vel / _wp_desired_speed_xy_cms;
}
// change s-curve time speed with a time constant of maximum acceleration / maximum jerk
float track_scaler_tc = 1.0f;
if (!is_zero(_wp_jerk)) {
track_scaler_tc = 0.01f * get_wp_acceleration()/_wp_jerk;
}
_track_scalar_dt += (track_scaler_dt - _track_scalar_dt) * (dt / track_scaler_tc);
// target position, velocity and acceleration from straight line or spline calculators
Vector3f target_pos, target_vel, target_accel;
bool s_finished;
if (!_this_leg_is_spline) {
// update target position, velocity and acceleration
target_pos = _origin;
s_finished = _scurve_this_leg.advance_target_along_track(_scurve_prev_leg, _scurve_next_leg, _wp_radius_cm, get_corner_acceleration(), _flags.fast_waypoint, _track_scalar_dt * vel_scaler_dt * dt, target_pos, target_vel, target_accel);
} else {
// splinetarget_vel
target_vel = curr_target_vel;
_spline_this_leg.advance_target_along_track(_track_scalar_dt * vel_scaler_dt * dt, target_pos, target_vel);
s_finished = _spline_this_leg.reached_destination();
}
Vector3f accel_offset;
if (is_positive(target_vel.length_squared())) {
Vector3f track_direction = target_vel.normalized();
accel_offset = track_direction * _offset_accel * target_vel.length() / _wp_desired_speed_xy_cms;
}
target_vel *= vel_scaler_dt;
target_accel *= sq(vel_scaler_dt);
target_accel += accel_offset;
// pass new target to the position controller
_pos_control.set_pos_vel_accel(target_pos.topostype(), target_vel, target_accel);
// check if we've reached the waypoint
if (!_flags.reached_destination) {
if (s_finished) {
// "fast" waypoints are complete once the intermediate point reaches the destination
if (_flags.fast_waypoint) {
_flags.reached_destination = true;
} else {
// regular waypoints also require the copter to be within the waypoint radius
const Vector3f dist_to_dest = curr_pos - _destination;
if (dist_to_dest.length_squared() <= sq(_wp_radius_cm)) {
_flags.reached_destination = true;
}
}
}
}
// successfully advanced along track
return true;
}
/// recalculate path with update speed and/or acceleration limits
void AC_WPNav::update_track_with_speed_accel_limits()
{
// update this leg
if (_this_leg_is_spline) {
_spline_this_leg.set_speed_accel(_pos_control.get_max_speed_xy_cms(), _pos_control.get_max_speed_up_cms(), _pos_control.get_max_speed_down_cms(),
get_wp_acceleration(), _wp_accel_z_cmss);
} else {
_scurve_this_leg.set_speed_max(_pos_control.get_max_speed_xy_cms(), _pos_control.get_max_speed_up_cms(), _pos_control.get_max_speed_down_cms());
}
// update next leg
if (_next_leg_is_spline) {
_spline_next_leg.set_speed_accel(_pos_control.get_max_speed_xy_cms(), _pos_control.get_max_speed_up_cms(), _pos_control.get_max_speed_down_cms(),
get_wp_acceleration(), _wp_accel_z_cmss);
} else {
_scurve_next_leg.set_speed_max(_pos_control.get_max_speed_xy_cms(), _pos_control.get_max_speed_up_cms(), _pos_control.get_max_speed_down_cms());
}
}
/// get_wp_distance_to_destination - get horizontal distance to destination in cm
float AC_WPNav::get_wp_distance_to_destination() const
{
return get_horizontal_distance_cm(_inav.get_position_xy_cm(), _destination.xy());
}
/// get_wp_bearing_to_destination - get bearing to next waypoint in centi-degrees
int32_t AC_WPNav::get_wp_bearing_to_destination() const
{
return get_bearing_cd(_inav.get_position_xy_cm(), _destination.xy());
}
/// update_wpnav - run the wp controller - should be called at 100hz or higher
bool AC_WPNav::update_wpnav()
{
// check for changes in speed parameter values
if (_check_wp_speed_change) {
if (!is_equal(_wp_speed_cms.get(), _last_wp_speed_cms)) {
set_speed_xy(_wp_speed_cms);
_last_wp_speed_cms = _wp_speed_cms;
}
}
if (!is_equal(_wp_speed_up_cms.get(), _last_wp_speed_up_cms)) {
set_speed_up(_wp_speed_up_cms);
_last_wp_speed_up_cms = _wp_speed_up_cms;
}
if (!is_equal(_wp_speed_down_cms.get(), _last_wp_speed_down_cms)) {
set_speed_down(_wp_speed_down_cms);
_last_wp_speed_down_cms = _wp_speed_down_cms;
}
// advance the target if necessary
bool ret = true;
if (!advance_wp_target_along_track(_pos_control.get_dt())) {
// To-Do: handle inability to advance along track (probably because of missing terrain data)
ret = false;
}
_pos_control.update_xy_controller();
_wp_last_update = AP_HAL::millis();
return ret;
}
// returns true if update_wpnav has been run very recently
bool AC_WPNav::is_active() const
{
return (AP_HAL::millis() - _wp_last_update) < 200;
}
// force stopping at next waypoint. Used by Dijkstra's object avoidance when path from destination to next destination is not clear
// only affects regular (e.g. non-spline) waypoints
// returns true if this had any affect on the path
bool AC_WPNav::force_stop_at_next_wp()
{
// exit immediately if vehicle was going to stop anyway
if (!_flags.fast_waypoint) {
return false;
}
_flags.fast_waypoint = false;
// update this_leg's final velocity and next leg's initial velocity to zero
if (!_this_leg_is_spline) {
_scurve_this_leg.set_destination_speed_max(0);
}
if (!_next_leg_is_spline) {
_scurve_next_leg.init();
}
return true;
}
// get terrain's altitude (in cm above the ekf origin) at the current position (+ve means terrain below vehicle is above ekf origin's altitude)
bool AC_WPNav::get_terrain_offset(float& offset_cm)
{
// calculate offset based on source (rangefinder or terrain database)
switch (get_terrain_source()) {
case AC_WPNav::TerrainSource::TERRAIN_UNAVAILABLE:
return false;
case AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER:
if (_rangefinder_healthy) {
offset_cm = _rangefinder_terrain_offset_cm;
return true;
}
return false;
case AC_WPNav::TerrainSource::TERRAIN_FROM_TERRAINDATABASE:
#if AP_TERRAIN_AVAILABLE
float terr_alt = 0.0f;
AP_Terrain *terrain = AP::terrain();
if (terrain != nullptr &&
terrain->height_above_terrain(terr_alt, true)) {
offset_cm = _inav.get_position_z_up_cm() - (terr_alt * 100.0);
return true;
}
#endif
return false;
}
// we should never get here
return false;
}
///
/// spline methods
///
/// set_spline_destination waypoint using location class
/// returns false if conversion from location to vector from ekf origin cannot be calculated
/// next_destination should be the next segment's destination
/// next_is_spline should be true if path to next_destination should be a spline
bool AC_WPNav::set_spline_destination_loc(const Location& destination, const Location& next_destination, bool next_is_spline)
{
// convert destination location to vector
Vector3f dest_neu;
bool dest_terr_alt;
if (!get_vector_NEU(destination, dest_neu, dest_terr_alt)) {
return false;
}
// convert next destination to vector
Vector3f next_dest_neu;
bool next_dest_terr_alt;
if (!get_vector_NEU(next_destination, next_dest_neu, next_dest_terr_alt)) {
return false;
}
// set target as vector from EKF origin
return set_spline_destination(dest_neu, dest_terr_alt, next_dest_neu, next_dest_terr_alt, next_is_spline);
}
/// set next destination (e.g. the one after the current destination) as a spline segment specified as a location
/// returns false if conversion from location to vector from ekf origin cannot be calculated
/// next_next_destination should be the next segment's destination
bool AC_WPNav::set_spline_destination_next_loc(const Location& next_destination, const Location& next_next_destination, bool next_next_is_spline)
{
// convert next_destination location to vector
Vector3f next_dest_neu;
bool next_dest_terr_alt;
if (!get_vector_NEU(next_destination, next_dest_neu, next_dest_terr_alt)) {
return false;
}
// convert next_next_destination to vector
Vector3f next_next_dest_neu;
bool next_next_dest_terr_alt;
if (!get_vector_NEU(next_next_destination, next_next_dest_neu, next_next_dest_terr_alt)) {
return false;
}
// set target as vector from EKF origin
return set_spline_destination_next(next_dest_neu, next_dest_terr_alt, next_next_dest_neu, next_next_dest_terr_alt, next_next_is_spline);
}
/// set_spline_destination waypoint using position vector (distance from ekf origin in cm)
/// terrain_alt should be true if destination.z is a desired altitude above terrain (false if its desired altitudes above ekf origin)
/// next_destination should be set to the next segment's destination
/// next_terrain_alt should be true if next_destination.z is a desired altitude above terrain (false if its desired altitudes above ekf origin)
/// next_destination.z must be in the same "frame" as destination.z (i.e. if destination is a alt-above-terrain, next_destination should be too)
bool AC_WPNav::set_spline_destination(const Vector3f& destination, bool terrain_alt, const Vector3f& next_destination, bool next_terrain_alt, bool next_is_spline)
{
// re-initialise if previous destination has been interrupted
if (!is_active() || !_flags.reached_destination) {
wp_and_spline_init(_wp_desired_speed_xy_cms);
}
// update spline calculators speeds and accelerations
_spline_this_leg.set_speed_accel(_pos_control.get_max_speed_xy_cms(), _pos_control.get_max_speed_up_cms(), _pos_control.get_max_speed_down_cms(),
_pos_control.get_max_accel_xy_cmss(), _pos_control.get_max_accel_z_cmss());
// calculate origin and origin velocity vector
Vector3f origin_vector;
if (terrain_alt == _terrain_alt) {
if (_flags.fast_waypoint) {
// calculate origin vector
if (_this_leg_is_spline) {
// if previous leg was a spline we can use destination velocity vector for origin velocity vector
origin_vector = _spline_this_leg.get_destination_vel();
} else {
// use direction of the previous straight line segment
origin_vector = _destination - _origin;
}
}
// use previous destination as origin
_origin = _destination;
} else {
// use previous destination as origin
_origin = _destination;
// get current alt above terrain
float origin_terr_offset;
if (!get_terrain_offset(origin_terr_offset)) {
return false;
}
// convert origin to alt-above-terrain if necessary
if (terrain_alt) {
// new destination is alt-above-terrain, previous destination was alt-above-ekf-origin
_origin.z -= origin_terr_offset;
_pos_control.init_pos_terrain_cm(origin_terr_offset);
} else {
// new destination is alt-above-ekf-origin, previous destination was alt-above-terrain
_origin.z += origin_terr_offset;
_pos_control.init_pos_terrain_cm(0.0);
}
}
// store destination location
_destination = destination;
_terrain_alt = terrain_alt;
// calculate destination velocity vector
Vector3f destination_vector;
if (terrain_alt == next_terrain_alt) {
if (next_is_spline) {
// leave this segment moving parallel to vector from origin to next destination
destination_vector = next_destination - _origin;
} else {
// leave this segment moving parallel to next segment
destination_vector = next_destination - _destination;
}
}
_flags.fast_waypoint = !destination_vector.is_zero();
// setup spline leg
_spline_this_leg.set_origin_and_destination(_origin, _destination, origin_vector, destination_vector);
_this_leg_is_spline = true;
_flags.reached_destination = false;
return true;
}
/// set next destination (e.g. the one after the current destination) as an offset (in cm, NEU frame) from the EKF origin
/// next_terrain_alt should be true if next_destination.z is a desired altitude above terrain (false if its desired altitudes above ekf origin)
/// next_next_destination should be set to the next segment's destination
/// next_next_terrain_alt should be true if next_next_destination.z is a desired altitude above terrain (false if it is desired altitude above ekf origin)
/// next_next_destination.z must be in the same "frame" as destination.z (i.e. if next_destination is a alt-above-terrain, next_next_destination should be too)
bool AC_WPNav::set_spline_destination_next(const Vector3f& next_destination, bool next_terrain_alt, const Vector3f& next_next_destination, bool next_next_terrain_alt, bool next_next_is_spline)
{
// do not add next point if alt types don't match
if (next_terrain_alt != _terrain_alt) {
return true;
}
// calculate origin and origin velocity vector
Vector3f origin_vector;
if (_this_leg_is_spline) {
// if previous leg was a spline we can use destination velocity vector for origin velocity vector
origin_vector = _spline_this_leg.get_destination_vel();
} else {
// use the direction of the previous straight line segment
origin_vector = _destination - _origin;
}
// calculate destination velocity vector
Vector3f destination_vector;
if (next_terrain_alt == next_next_terrain_alt) {
if (next_next_is_spline) {
// leave this segment moving parallel to vector from this leg's origin (i.e. prev leg's destination) to next next destination
destination_vector = next_next_destination - _destination;
} else {
// leave this segment moving parallel to next segment
destination_vector = next_next_destination - next_destination;
}
}
// update spline calculators speeds and accelerations
_spline_next_leg.set_speed_accel(_pos_control.get_max_speed_xy_cms(), _pos_control.get_max_speed_up_cms(), _pos_control.get_max_speed_down_cms(),
_pos_control.get_max_accel_xy_cmss(), _pos_control.get_max_accel_z_cmss());
// setup next spline leg. Note this could be made local
_spline_next_leg.set_origin_and_destination(_destination, next_destination, origin_vector, destination_vector);
_next_leg_is_spline = true;
// next destination provided so fast waypoint
_flags.fast_waypoint = true;
// update this_leg's final velocity to match next spline leg
if (!_this_leg_is_spline) {
_scurve_this_leg.set_destination_speed_max(_spline_next_leg.get_origin_speed_max());
} else {
_spline_this_leg.set_destination_speed_max(_spline_next_leg.get_origin_speed_max());
}
return true;
}
// convert location to vector from ekf origin. terrain_alt is set to true if resulting vector's z-axis should be treated as alt-above-terrain
// returns false if conversion failed (likely because terrain data was not available)
bool AC_WPNav::get_vector_NEU(const Location &loc, Vector3f &vec, bool &terrain_alt)
{
// convert location to NE vector2f
Vector2f res_vec;
if (!loc.get_vector_xy_from_origin_NE(res_vec)) {
return false;
}
// convert altitude
if (loc.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN) {
int32_t terr_alt;
if (!loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, terr_alt)) {
return false;
}
vec.z = terr_alt;
terrain_alt = true;
} else {
terrain_alt = false;
int32_t temp_alt;
if (!loc.get_alt_cm(Location::AltFrame::ABOVE_ORIGIN, temp_alt)) {
return false;
}
vec.z = temp_alt;
terrain_alt = false;
}
// copy xy (we do this to ensure we do not adjust vector unless the overall conversion is successful
vec.x = res_vec.x;
vec.y = res_vec.y;
return true;
}
// helper function to calculate scurve jerk and jerk_time values
// updates _scurve_jerk and _scurve_snap
void AC_WPNav::calc_scurve_jerk_and_snap()
{
// calculate jerk
_scurve_jerk = MIN(_attitude_control.get_ang_vel_roll_max_rads() * GRAVITY_MSS, _attitude_control.get_ang_vel_pitch_max_rads() * GRAVITY_MSS);
if (is_zero(_scurve_jerk)) {
_scurve_jerk = _wp_jerk;
} else {
_scurve_jerk = MIN(_scurve_jerk, _wp_jerk);
}
// calculate maximum snap
// Snap (the rate of change of jerk) uses the attitude control input time constant because multicopters
// lean to accelerate. This means the change in angle is equivalent to the change in acceleration
_scurve_snap = (_scurve_jerk * M_PI) / (2.0 * MAX(_attitude_control.get_input_tc(), 0.1f));
const float snap = MIN(_attitude_control.get_accel_roll_max_radss(), _attitude_control.get_accel_pitch_max_radss()) * GRAVITY_MSS;
if (is_positive(snap)) {
_scurve_snap = MIN(_scurve_snap, snap);
}
// reduce maximum snap by a factor of two from what the aircraft is capable of
_scurve_snap *= 0.5;
}