ardupilot/ArduSub/control_althold.cpp

143 lines
5.6 KiB
C++

#include "Sub.h"
/*
* control_althold.pde - init and run calls for althold, flight mode
*/
// althold_init - initialise althold controller
bool Sub::althold_init()
{
if(!control_check_barometer()) {
return false;
}
// initialize vertical speeds and leash lengths
// sets the maximum speed up and down returned by position controller
pos_control.set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control.set_max_accel_z(g.pilot_accel_z);
pos_control.relax_alt_hold_controllers();
pos_control.set_target_to_stopping_point_z();
holding_depth = true;
if (prev_control_mode == STABILIZE) {
last_roll = ahrs.roll_sensor;
last_pitch = ahrs.pitch_sensor;
} else {
last_roll = 0;
last_pitch = 0;
}
last_yaw = ahrs.yaw_sensor;
last_input_ms = AP_HAL::millis();
return true;
}
void Sub::handle_attitude()
{
uint32_t tnow = AP_HAL::millis();
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// get pilot desired lean angles
float target_roll, target_pitch, target_yaw;
// Check if set_attitude_target_no_gps is valid
if (tnow - sub.set_attitude_target_no_gps.last_message_ms < 5000) {
Quaternion(
set_attitude_target_no_gps.packet.q
).to_euler(
target_roll,
target_pitch,
target_yaw
);
target_roll = 100 * degrees(target_roll);
target_pitch = 100 * degrees(target_pitch);
target_yaw = 100 * degrees(target_yaw);
last_roll = target_roll;
last_pitch = target_pitch;
last_yaw = target_yaw;
attitude_control.input_euler_angle_roll_pitch_yaw(target_roll, target_pitch, target_yaw, true);
} else {
// If we don't have a mavlink attitude target, we use the pilot's input instead
get_pilot_desired_lean_angles(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_roll, target_pitch, attitude_control.get_althold_lean_angle_max());
target_yaw = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (abs(target_roll) > 50 || abs(target_pitch) > 50) {
last_roll = ahrs.roll_sensor;
last_pitch = ahrs.pitch_sensor;
last_yaw = ahrs.yaw_sensor;
last_input_ms = tnow;
attitude_control.input_rate_bf_roll_pitch_yaw(target_roll, target_pitch, target_yaw);
} else if (abs(target_yaw) > 50) {
// if only yaw is being controlled, don't update pitch and roll
attitude_control.input_rate_bf_roll_pitch_yaw(0, 0, target_yaw);
last_yaw = ahrs.yaw_sensor;
last_input_ms = tnow;
} else if (tnow < last_input_ms + 250) {
// just brake for a few mooments so we don't bounce
last_yaw = ahrs.yaw_sensor;
attitude_control.input_rate_bf_roll_pitch_yaw(0, 0, 0);
} else {
// Lock attitude
attitude_control.input_euler_angle_roll_pitch_yaw(last_roll, last_pitch, last_yaw, true);
}
}
}
// althold_run - runs the althold controller
// should be called at 100hz or more
void Sub::althold_run()
{
// When unarmed, disable motors and stabilization
if (!motors.armed()) {
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE);
// Sub vehicles do not stabilize roll/pitch/yaw when not auto-armed (i.e. on the ground, pilot has never raised throttle)
attitude_control.set_throttle_out(0.5 ,true, g.throttle_filt);
attitude_control.relax_attitude_controllers();
pos_control.relax_alt_hold_controllers();
last_roll = 0;
last_pitch = 0;
last_yaw = ahrs.yaw_sensor;
holding_depth = false;
return;
}
// Vehicle is armed, motors are free to run
motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
handle_attitude();
pos_control.update_z_controller();
// Read the output of the z controller and rotate it so it always points up
Vector3f throttle_vehicle_frame = ahrs.get_rotation_body_to_ned().transposed() * Vector3f(0, 0, motors.get_throttle_in_bidirectional());
// Output the Z controller + pilot input to all motors.
//TODO: scale throttle with the ammount of thrusters in the given direction
motors.set_throttle(0.5+throttle_vehicle_frame.z + channel_throttle->norm_input()-0.5);
motors.set_forward(-throttle_vehicle_frame.x + channel_forward->norm_input());
motors.set_lateral(-throttle_vehicle_frame.y + channel_lateral->norm_input());
// We rotate the RC inputs to the earth frame to check if the user is giving an input that would change the depth.
Vector3f earth_frame_rc_inputs = ahrs.get_rotation_body_to_ned() * Vector3f(channel_forward->norm_input(), channel_lateral->norm_input(), (2.0f*(-0.5f+channel_throttle->norm_input())));
if (fabsf(earth_frame_rc_inputs.z) > 0.05f) { // Throttle input above 5%
// reset z targets to current values
holding_depth = false;
pos_control.relax_alt_hold_controllers();
} else { // hold z
if (ap.at_surface) {
pos_control.set_alt_target(g.surface_depth - 5.0f); // set target to 5cm below surface level
holding_depth = true;
} else if (ap.at_bottom) {
pos_control.set_alt_target(inertial_nav.get_altitude() + 10.0f); // set target to 10 cm above bottom
holding_depth = true;
} else if (!holding_depth) {
pos_control.set_target_to_stopping_point_z();
holding_depth = true;
}
}
}