ardupilot/ArduCopter/system.cpp

680 lines
22 KiB
C++

#include "Copter.h"
#include "version.h"
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// This is the help function
int8_t Copter::main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf("Commands:\n"
" logs\n"
" setup\n"
" test\n"
" reboot\n"
"\n");
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] = {
// command function called
// ======= ===============
{"logs", MENU_FUNC(process_logs)},
{"setup", MENU_FUNC(setup_mode)},
{"test", MENU_FUNC(test_mode)},
{"reboot", MENU_FUNC(reboot_board)},
{"help", MENU_FUNC(main_menu_help)},
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
int8_t Copter::reboot_board(uint8_t argc, const Menu::arg *argv)
{
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
void Copter::run_cli(AP_HAL::UARTDriver *port)
{
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(nullptr, 5);
// disable main_loop failsafe
failsafe_disable();
// cut the engines
if(motors->armed()) {
motors->armed(false);
motors->output();
}
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void mavlink_delay_cb_static()
{
copter.mavlink_delay_cb();
}
static void failsafe_check_static()
{
copter.failsafe_check();
}
void Copter::init_ardupilot()
{
if (!hal.gpio->usb_connected()) {
// USB is not connected, this means UART0 may be a Xbee, with
// its darned bricking problem. We can't write to it for at
// least one second after powering up. Simplest solution for
// now is to delay for 1 second. Something more elegant may be
// added later
delay(1000);
}
// initialise serial port
serial_manager.init_console();
// init vehicle capabilties
init_capabilities();
cliSerial->printf("\n\nInit " FIRMWARE_STRING
"\n\nFree RAM: %u\n",
(unsigned)hal.util->available_memory());
//
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
//
report_version();
// load parameters from EEPROM
load_parameters();
// initialise stats module
g2.stats.init();
gcs().set_dataflash(&DataFlash);
// identify ourselves correctly with the ground station
mavlink_system.sysid = g.sysid_this_mav;
// initialise serial ports
serial_manager.init();
// setup first port early to allow BoardConfig to report errors
gcs_chan[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
BoardConfig.init();
// init cargo gripper
#if GRIPPER_ENABLED == ENABLED
g2.gripper.init();
#endif
// initialise notify system
notify.init(true);
notify_flight_mode(control_mode);
// initialise battery monitor
battery.init();
// Init RSSI
rssi.init();
barometer.init();
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
ap.usb_connected = true;
check_usb_mux();
// setup telem slots with serial ports
for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
gcs_chan[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i);
}
#if FRSKY_TELEM_ENABLED == ENABLED
// setup frsky, and pass a number of parameters to the library
char firmware_buf[50];
snprintf(firmware_buf, sizeof(firmware_buf), FIRMWARE_STRING " %s", get_frame_string());
frsky_telemetry.init(serial_manager, firmware_buf,
get_frame_mav_type(),
&g.fs_batt_voltage, &g.fs_batt_mah, &ap.value);
#endif
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
// update motor interlock state
update_using_interlock();
#if FRAME_CONFIG == HELI_FRAME
// trad heli specific initialisation
heli_init();
#endif
init_rc_in(); // sets up rc channels from radio
// default frame class to match firmware if possible
set_default_frame_class();
// allocate the motors class
allocate_motors();
init_rc_out(); // sets up motors and output to escs
// initialise which outputs Servo and Relay events can use
ServoRelayEvents.set_channel_mask(~motors->get_motor_mask());
relay.init();
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
// give AHRS the rnage beacon sensor
ahrs.set_beacon(&g2.beacon);
// Do GPS init
gps.init(&DataFlash, serial_manager);
if(g.compass_enabled)
init_compass();
#if OPTFLOW == ENABLED
// make optflow available to AHRS
ahrs.set_optflow(&optflow);
#endif
// init Location class
Location_Class::set_ahrs(&ahrs);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
Location_Class::set_terrain(&terrain);
wp_nav->set_terrain(&terrain);
#endif
#if AC_AVOID_ENABLED == ENABLED
wp_nav->set_avoidance(&avoid);
#endif
attitude_control->parameter_sanity_check();
pos_control->set_dt(MAIN_LOOP_SECONDS);
// init the optical flow sensor
init_optflow();
#if MOUNT == ENABLED
// initialise camera mount
camera_mount.init(&DataFlash, serial_manager);
#endif
#if PRECISION_LANDING == ENABLED
// initialise precision landing
init_precland();
#endif
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
#if CLI_ENABLED == ENABLED
if (g.cli_enabled) {
const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
cliSerial->printf("%s\n", msg);
if (gcs_chan[1].initialised && (gcs_chan[1].get_uart() != nullptr)) {
gcs_chan[1].get_uart()->printf("%s\n", msg);
}
if (num_gcs > 2 && gcs_chan[2].initialised && (gcs_chan[2].get_uart() != nullptr)) {
gcs_chan[2].get_uart()->printf("%s\n", msg);
}
}
#endif // CLI_ENABLED
#if HIL_MODE != HIL_MODE_DISABLED
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
delay(1000);
}
// set INS to HIL mode
ins.set_hil_mode();
#endif
// read Baro pressure at ground
//-----------------------------
init_barometer(true);
// initialise rangefinder
init_rangefinder();
// init proximity sensor
init_proximity();
// init beacons used for non-gps position estimation
init_beacon();
// initialise AP_RPM library
rpm_sensor.init();
// initialise mission library
mission.init();
// initialise the flight mode and aux switch
// ---------------------------
reset_control_switch();
init_aux_switches();
startup_INS_ground();
// set landed flags
set_land_complete(true);
set_land_complete_maybe(true);
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
// enable CPU failsafe
failsafe_enable();
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
ins.set_dataflash(&DataFlash);
cliSerial->printf("\nReady to FLY ");
// flag that initialisation has completed
ap.initialised = true;
}
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//******************************************************************************
void Copter::startup_INS_ground()
{
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
// Warm up and calibrate gyro offsets
ins.init(scheduler.get_loop_rate_hz());
// reset ahrs including gyro bias
ahrs.reset();
}
// calibrate gyros - returns true if successfully calibrated
bool Copter::calibrate_gyros()
{
// gyro offset calibration
copter.ins.init_gyro();
// reset ahrs gyro bias
if (copter.ins.gyro_calibrated_ok_all()) {
copter.ahrs.reset_gyro_drift();
return true;
}
return false;
}
// position_ok - returns true if the horizontal absolute position is ok and home position is set
bool Copter::position_ok()
{
// return false if ekf failsafe has triggered
if (failsafe.ekf) {
return false;
}
// check ekf position estimate
return (ekf_position_ok() || optflow_position_ok());
}
// ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set
bool Copter::ekf_position_ok()
{
if (!ahrs.have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal position
if (!motors->armed()) {
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
} else {
// once armed we require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
}
// optflow_position_ok - returns true if optical flow based position estimate is ok
bool Copter::optflow_position_ok()
{
#if OPTFLOW != ENABLED
return false;
#else
// return immediately if optflow is not enabled or EKF not used
if (!optflow.enabled() || !ahrs.have_inertial_nav()) {
return false;
}
// get filter status from EKF
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal relative position
if (!motors->armed()) {
return (filt_status.flags.pred_horiz_pos_rel);
} else {
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
}
#endif
}
// update_auto_armed - update status of auto_armed flag
void Copter::update_auto_armed()
{
// disarm checks
if(ap.auto_armed){
// if motors are disarmed, auto_armed should also be false
if(!motors->armed()) {
set_auto_armed(false);
return;
}
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
if(mode_has_manual_throttle(control_mode) && ap.throttle_zero && !failsafe.radio) {
set_auto_armed(false);
}
#if FRAME_CONFIG == HELI_FRAME
// if helicopters are on the ground, and the motor is switched off, auto-armed should be false
// so that rotor runup is checked again before attempting to take-off
if(ap.land_complete && !motors->rotor_runup_complete()) {
set_auto_armed(false);
}
#endif // HELI_FRAME
}else{
// arm checks
#if FRAME_CONFIG == HELI_FRAME
// for tradheli if motors are armed and throttle is above zero and the motor is started, auto_armed should be true
if(motors->armed() && !ap.throttle_zero && motors->rotor_runup_complete()) {
set_auto_armed(true);
}
#else
// if motors are armed and throttle is above zero auto_armed should be true
// if motors are armed and we are in throw mode, then auto_ermed should be true
if(motors->armed() && (!ap.throttle_zero || control_mode == THROW)) {
set_auto_armed(true);
}
#endif // HELI_FRAME
}
}
void Copter::check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == ap.usb_connected) {
return;
}
// the user has switched to/from the telemetry port
ap.usb_connected = usb_check;
}
/*
should we log a message type now?
*/
bool Copter::should_log(uint32_t mask)
{
#if LOGGING_ENABLED == ENABLED
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
return false;
}
bool ret = motors->armed() || DataFlash.log_while_disarmed();
if (ret && !DataFlash.logging_started() && !in_log_download) {
start_logging();
}
return ret;
#else
return false;
#endif
}
// default frame_class to match firmware if possible
void Copter::set_default_frame_class()
{
if (FRAME_CONFIG == HELI_FRAME &&
g2.frame_class.get() != AP_Motors::MOTOR_FRAME_HELI_DUAL) {
g2.frame_class.set(AP_Motors::MOTOR_FRAME_HELI);
}
}
// return MAV_TYPE corresponding to frame class
uint8_t Copter::get_frame_mav_type()
{
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
case AP_Motors::MOTOR_FRAME_QUAD:
case AP_Motors::MOTOR_FRAME_UNDEFINED:
return MAV_TYPE_QUADROTOR;
case AP_Motors::MOTOR_FRAME_HEXA:
case AP_Motors::MOTOR_FRAME_Y6:
return MAV_TYPE_HEXAROTOR;
case AP_Motors::MOTOR_FRAME_OCTA:
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
return MAV_TYPE_OCTOROTOR;
case AP_Motors::MOTOR_FRAME_HELI:
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
return MAV_TYPE_HELICOPTER;
case AP_Motors::MOTOR_FRAME_TRI:
return MAV_TYPE_TRICOPTER;
case AP_Motors::MOTOR_FRAME_SINGLE:
case AP_Motors::MOTOR_FRAME_COAX:
case AP_Motors::MOTOR_FRAME_TAILSITTER:
return MAV_TYPE_COAXIAL;
}
// unknown frame so return generic
return MAV_TYPE_GENERIC;
}
// return string corresponding to frame_class
const char* Copter::get_frame_string()
{
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
case AP_Motors::MOTOR_FRAME_QUAD:
return "QUAD";
case AP_Motors::MOTOR_FRAME_HEXA:
return "HEXA";
case AP_Motors::MOTOR_FRAME_Y6:
return "Y6";
case AP_Motors::MOTOR_FRAME_OCTA:
return "OCTA";
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
return "OCTA_QUAD";
case AP_Motors::MOTOR_FRAME_HELI:
return "HELI";
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
return "HELI_DUAL";
case AP_Motors::MOTOR_FRAME_TRI:
return "TRI";
case AP_Motors::MOTOR_FRAME_SINGLE:
return "SINGLE";
case AP_Motors::MOTOR_FRAME_COAX:
return "COAX";
case AP_Motors::MOTOR_FRAME_TAILSITTER:
return "TAILSITTER";
case AP_Motors::MOTOR_FRAME_UNDEFINED:
default:
return "UNKNOWN";
}
}
/*
allocate the motors class
*/
void Copter::allocate_motors(void)
{
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
#if FRAME_CONFIG != HELI_FRAME
case AP_Motors::MOTOR_FRAME_QUAD:
case AP_Motors::MOTOR_FRAME_HEXA:
case AP_Motors::MOTOR_FRAME_Y6:
case AP_Motors::MOTOR_FRAME_OCTA:
case AP_Motors::MOTOR_FRAME_OCTAQUAD:
default:
motors = new AP_MotorsMatrix(MAIN_LOOP_RATE);
motors_var_info = AP_MotorsMatrix::var_info;
break;
case AP_Motors::MOTOR_FRAME_TRI:
motors = new AP_MotorsTri(MAIN_LOOP_RATE);
motors_var_info = AP_MotorsTri::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_TRICOPTER);
break;
case AP_Motors::MOTOR_FRAME_SINGLE:
motors = new AP_MotorsSingle(MAIN_LOOP_RATE);
motors_var_info = AP_MotorsSingle::var_info;
break;
case AP_Motors::MOTOR_FRAME_COAX:
motors = new AP_MotorsCoax(MAIN_LOOP_RATE);
motors_var_info = AP_MotorsCoax::var_info;
break;
case AP_Motors::MOTOR_FRAME_TAILSITTER:
motors = new AP_MotorsTailsitter(MAIN_LOOP_RATE);
motors_var_info = AP_MotorsTailsitter::var_info;
break;
#else // FRAME_CONFIG == HELI_FRAME
case AP_Motors::MOTOR_FRAME_HELI_DUAL:
motors = new AP_MotorsHeli_Dual(MAIN_LOOP_RATE);
motors_var_info = AP_MotorsHeli_Dual::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
break;
case AP_Motors::MOTOR_FRAME_HELI:
default:
motors = new AP_MotorsHeli_Single(MAIN_LOOP_RATE);
motors_var_info = AP_MotorsHeli_Single::var_info;
AP_Param::set_frame_type_flags(AP_PARAM_FRAME_HELI);
break;
#endif
}
if (motors == nullptr) {
AP_HAL::panic("Unable to allocate FRAME_CLASS=%u", (unsigned)g2.frame_class.get());
}
AP_Param::load_object_from_eeprom(motors, motors_var_info);
AP_AHRS_View *ahrs_view = ahrs.create_view(ROTATION_NONE);
if (ahrs_view == nullptr) {
AP_HAL::panic("Unable to allocate AP_AHRS_View");
}
const struct AP_Param::GroupInfo *ac_var_info;
#if FRAME_CONFIG != HELI_FRAME
attitude_control = new AC_AttitudeControl_Multi(*ahrs_view, aparm, *motors, MAIN_LOOP_SECONDS);
ac_var_info = AC_AttitudeControl_Multi::var_info;
#else
attitude_control = new AC_AttitudeControl_Heli(*ahrs_view, aparm, *motors, MAIN_LOOP_SECONDS);
ac_var_info = AC_AttitudeControl_Heli::var_info;
#endif
if (attitude_control == nullptr) {
AP_HAL::panic("Unable to allocate AttitudeControl");
}
AP_Param::load_object_from_eeprom(attitude_control, ac_var_info);
pos_control = new AC_PosControl(*ahrs_view, inertial_nav, *motors, *attitude_control,
g.p_alt_hold, g.p_vel_z, g.pid_accel_z,
g.p_pos_xy, g.pi_vel_xy);
if (pos_control == nullptr) {
AP_HAL::panic("Unable to allocate PosControl");
}
AP_Param::load_object_from_eeprom(pos_control, pos_control->var_info);
wp_nav = new AC_WPNav(inertial_nav, *ahrs_view, *pos_control, *attitude_control);
if (wp_nav == nullptr) {
AP_HAL::panic("Unable to allocate WPNav");
}
AP_Param::load_object_from_eeprom(wp_nav, wp_nav->var_info);
circle_nav = new AC_Circle(inertial_nav, *ahrs_view, *pos_control);
if (wp_nav == nullptr) {
AP_HAL::panic("Unable to allocate CircleNav");
}
AP_Param::load_object_from_eeprom(circle_nav, circle_nav->var_info);
// reload lines from the defaults file that may now be accessible
AP_Param::reload_defaults_file();
// now setup some frame-class specific defaults
switch ((AP_Motors::motor_frame_class)g2.frame_class.get()) {
case AP_Motors::MOTOR_FRAME_Y6:
attitude_control->get_rate_roll_pid().kP().set_default(0.1);
attitude_control->get_rate_roll_pid().kD().set_default(0.006);
attitude_control->get_rate_pitch_pid().kP().set_default(0.1);
attitude_control->get_rate_pitch_pid().kD().set_default(0.006);
attitude_control->get_rate_yaw_pid().kP().set_default(0.15);
attitude_control->get_rate_yaw_pid().kI().set_default(0.015);
break;
case AP_Motors::MOTOR_FRAME_TRI:
attitude_control->get_rate_yaw_pid().filt_hz().set_default(100);
break;
default:
break;
}
if (upgrading_frame_params) {
// do frame specific upgrade. This is only done the first time we run the new firmware
#if FRAME_CONFIG == HELI_FRAME
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 12, CH_1);
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 13, CH_2);
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 14, CH_3);
SRV_Channels::upgrade_motors_servo(Parameters::k_param_motors, 15, CH_4);
#else
if (g2.frame_class == AP_Motors::MOTOR_FRAME_TRI) {
const AP_Param::ConversionInfo tri_conversion_info[] = {
{ Parameters::k_param_motors, 32, AP_PARAM_INT16, "SERVO7_TRIM" },
{ Parameters::k_param_motors, 33, AP_PARAM_INT16, "SERVO7_MIN" },
{ Parameters::k_param_motors, 34, AP_PARAM_INT16, "SERVO7_MAX" },
{ Parameters::k_param_motors, 35, AP_PARAM_FLOAT, "MOT_YAW_SV_ANGLE" },
};
// we need to use CONVERT_FLAG_FORCE as the SERVO7_* parameters will already be set from RC7_*
AP_Param::convert_old_parameters(tri_conversion_info, ARRAY_SIZE(tri_conversion_info), AP_Param::CONVERT_FLAG_FORCE);
const AP_Param::ConversionInfo tri_conversion_info_rev { Parameters::k_param_motors, 31, AP_PARAM_INT8, "SERVO7_REVERSED" };
AP_Param::convert_old_parameter(&tri_conversion_info_rev, 1, AP_Param::CONVERT_FLAG_REVERSE | AP_Param::CONVERT_FLAG_FORCE);
// AP_MotorsTri was converted from having nested var_info to one level
AP_Param::convert_parent_class(Parameters::k_param_motors, motors, motors->var_info);
}
#endif
}
// upgrade parameters. This must be done after allocating the objects
convert_pid_parameters();
}