ardupilot/ArduCopter/tuning.cpp

229 lines
7.0 KiB
C++

#include "Copter.h"
/*
* Function to update various parameters in flight using the ch6 tuning knob
* This should not be confused with the AutoTune feature which can bve found in control_autotune.cpp
*/
// tuning - updates parameters based on the ch6 tuning knob's position
// should be called at 3.3hz
void Copter::tuning() {
RC_Channel *rc6 = RC_Channels::rc_channel(CH_6);
// exit immediately if not using tuning function, or when radio failsafe is invoked, so tuning values are not set to zero
if ((g.radio_tuning <= 0) || failsafe.radio || failsafe.radio_counter != 0 || rc6->get_radio_in() == 0) {
return;
}
uint16_t radio_in = rc6->get_radio_in();
float v = constrain_float((radio_in - rc6->get_radio_min()) / float(rc6->get_radio_max() - rc6->get_radio_min()), 0, 1);
int16_t control_in = g.radio_tuning_low + v * (g.radio_tuning_high - g.radio_tuning_low);
float tuning_value = control_in / 1000.0f;
// Tuning Value should never be outside the bounds of the specified low and high value
tuning_value = constrain_float(tuning_value, g.radio_tuning_low/1000.0f, g.radio_tuning_high/1000.0f);
Log_Write_Parameter_Tuning(g.radio_tuning, tuning_value, control_in, g.radio_tuning_low, g.radio_tuning_high);
switch(g.radio_tuning) {
// Roll, Pitch tuning
case TUNING_STABILIZE_ROLL_PITCH_KP:
attitude_control->get_angle_roll_p().kP(tuning_value);
attitude_control->get_angle_pitch_p().kP(tuning_value);
break;
case TUNING_RATE_ROLL_PITCH_KP:
attitude_control->get_rate_roll_pid().kP(tuning_value);
attitude_control->get_rate_pitch_pid().kP(tuning_value);
break;
case TUNING_RATE_ROLL_PITCH_KI:
attitude_control->get_rate_roll_pid().kI(tuning_value);
attitude_control->get_rate_pitch_pid().kI(tuning_value);
break;
case TUNING_RATE_ROLL_PITCH_KD:
attitude_control->get_rate_roll_pid().kD(tuning_value);
attitude_control->get_rate_pitch_pid().kD(tuning_value);
break;
// Yaw tuning
case TUNING_STABILIZE_YAW_KP:
attitude_control->get_angle_yaw_p().kP(tuning_value);
break;
case TUNING_YAW_RATE_KP:
attitude_control->get_rate_yaw_pid().kP(tuning_value);
break;
case TUNING_YAW_RATE_KD:
attitude_control->get_rate_yaw_pid().kD(tuning_value);
break;
// Altitude and throttle tuning
case TUNING_ALTITUDE_HOLD_KP:
g.p_alt_hold.kP(tuning_value);
break;
case TUNING_THROTTLE_RATE_KP:
g.p_vel_z.kP(tuning_value);
break;
case TUNING_ACCEL_Z_KP:
g.pid_accel_z.kP(tuning_value);
break;
case TUNING_ACCEL_Z_KI:
g.pid_accel_z.kI(tuning_value);
break;
case TUNING_ACCEL_Z_KD:
g.pid_accel_z.kD(tuning_value);
break;
// Loiter and navigation tuning
case TUNING_LOITER_POSITION_KP:
g.p_pos_xy.kP(tuning_value);
break;
case TUNING_VEL_XY_KP:
g.pi_vel_xy.kP(tuning_value);
break;
case TUNING_VEL_XY_KI:
g.pi_vel_xy.kI(tuning_value);
break;
case TUNING_WP_SPEED:
// set waypoint navigation horizontal speed to 0 ~ 1000 cm/s
wp_nav->set_speed_xy(control_in);
break;
// Acro roll pitch gain
case TUNING_ACRO_RP_KP:
g.acro_rp_p = tuning_value;
break;
// Acro yaw gain
case TUNING_ACRO_YAW_KP:
g.acro_yaw_p = tuning_value;
break;
#if FRAME_CONFIG == HELI_FRAME
case TUNING_HELI_EXTERNAL_GYRO:
motors->ext_gyro_gain((float)control_in / 1000.0f);
break;
case TUNING_RATE_PITCH_FF:
attitude_control->get_rate_pitch_pid().ff(tuning_value);
break;
case TUNING_RATE_ROLL_FF:
attitude_control->get_rate_roll_pid().ff(tuning_value);
break;
case TUNING_RATE_YAW_FF:
attitude_control->get_rate_yaw_pid().ff(tuning_value);
break;
#endif
case TUNING_DECLINATION:
// set declination to +-20degrees
compass.set_declination(ToRad((2.0f * control_in - g.radio_tuning_high)/100.0f), false); // 2nd parameter is false because we do not want to save to eeprom because this would have a performance impact
break;
case TUNING_CIRCLE_RATE:
// set circle rate up to approximately 45 deg/sec in either direction
circle_nav->set_rate((float)control_in/25.0f-20.0f);
break;
case TUNING_RANGEFINDER_GAIN:
// set rangefinder gain
g.rangefinder_gain.set(tuning_value);
break;
#if 0
// disabled for now - we need accessor functions
case TUNING_EKF_VERTICAL_POS:
// Tune the EKF that is being used
// EKF's baro vs accel (higher rely on accels more, baro impact is reduced)
if (!ahrs.get_NavEKF2().enabled()) {
ahrs.get_NavEKF()._gpsVertPosNoise = tuning_value;
} else {
ahrs.get_NavEKF2()._gpsVertPosNoise = tuning_value;
}
break;
case TUNING_EKF_HORIZONTAL_POS:
// EKF's gps vs accel (higher rely on accels more, gps impact is reduced)
if (!ahrs.get_NavEKF2().enabled()) {
ahrs.get_NavEKF()._gpsHorizPosNoise = tuning_value;
} else {
ahrs.get_NavEKF2()._gpsHorizPosNoise = tuning_value;
}
break;
case TUNING_EKF_ACCEL_NOISE:
// EKF's accel noise (lower means trust accels more, gps & baro less)
if (!ahrs.get_NavEKF2().enabled()) {
ahrs.get_NavEKF()._accNoise = tuning_value;
} else {
ahrs.get_NavEKF2()._accNoise = tuning_value;
}
break;
#endif
case TUNING_RC_FEEL_RP:
// roll-pitch input smoothing
g.rc_feel_rp = control_in / 10;
break;
case TUNING_RATE_PITCH_KP:
attitude_control->get_rate_pitch_pid().kP(tuning_value);
break;
case TUNING_RATE_PITCH_KI:
attitude_control->get_rate_pitch_pid().kI(tuning_value);
break;
case TUNING_RATE_PITCH_KD:
attitude_control->get_rate_pitch_pid().kD(tuning_value);
break;
case TUNING_RATE_ROLL_KP:
attitude_control->get_rate_roll_pid().kP(tuning_value);
break;
case TUNING_RATE_ROLL_KI:
attitude_control->get_rate_roll_pid().kI(tuning_value);
break;
case TUNING_RATE_ROLL_KD:
attitude_control->get_rate_roll_pid().kD(tuning_value);
break;
#if FRAME_CONFIG != HELI_FRAME
case TUNING_RATE_MOT_YAW_HEADROOM:
motors->set_yaw_headroom(tuning_value*1000);
break;
#endif
case TUNING_RATE_YAW_FILT:
attitude_control->get_rate_yaw_pid().filt_hz(tuning_value);
break;
case TUNING_WINCH: {
float desired_rate = 0.0f;
if (v > 0.6f) {
desired_rate = g2.winch.get_rate_max() * (v - 0.6f) / 0.4f;
}
if (v < 0.4f) {
desired_rate = g2.winch.get_rate_max() * (v - 0.4) / 0.4f;
}
g2.winch.set_desired_rate(desired_rate);
break;
}
}
}