ardupilot/libraries/AP_UAVCAN/AP_UAVCAN_SLCAN.cpp
2019-10-08 10:02:14 +11:00

573 lines
16 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Author: Siddharth Bharat Purohit
* Referenced from implementation by Pavel Kirienko <pavel.kirienko@zubax.com>
* for Zubax Babel
*/
#include <AP_HAL/AP_HAL.h>
#if AP_UAVCAN_SLCAN_ENABLED
#include "AP_UAVCAN_SLCAN.h"
#include <AP_SerialManager/AP_SerialManager.h>
#include <AP_HAL_ChibiOS/CANSerialRouter.h>
extern const AP_HAL::HAL& hal;
static uint8_t nibble2hex(uint8_t x)
{
// Allocating in RAM because it's faster
static uint8_t ConversionTable[] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
};
return ConversionTable[x & 0x0F];
}
static bool hex2nibble_error;
static uint8_t hex2nibble(char c)
{
// Must go into RAM, not flash, because flash is slow
static uint8_t NumConversionTable[] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
};
static uint8_t AlphaConversionTable[] = {
10, 11, 12, 13, 14, 15
};
uint8_t out = 255;
if (c >= '0' && c <= '9') {
out = NumConversionTable[int(c) - int('0')];
}
else if (c >= 'a' && c <= 'f') {
out = AlphaConversionTable[int(c) - int('a')];
}
else if (c >= 'A' && c <= 'F') {
out = AlphaConversionTable[int(c) - int('A')];
}
if (out == 255) {
hex2nibble_error = true;
}
return out;
}
bool SLCAN::CAN::push_Frame(uavcan::CanFrame &frame)
{
SLCAN::CanRxItem frm;
frm.frame = frame;
frm.flags = 0;
frm.utc_usec = AP_HAL::micros64();
ChibiOS_CAN::CanIface::slcan_router().route_frame_to_can(frm.frame, frm.utc_usec);
return rx_queue_.push(frm);
}
/**
* General frame format:
* <type> <id> <dlc> <data>
* The emitting functions below are highly optimized for speed.
*/
bool SLCAN::CAN::handle_FrameDataExt(const char* cmd)
{
uavcan::CanFrame f;
hex2nibble_error = false;
f.id = f.FlagEFF |
(hex2nibble(cmd[1]) << 28) |
(hex2nibble(cmd[2]) << 24) |
(hex2nibble(cmd[3]) << 20) |
(hex2nibble(cmd[4]) << 16) |
(hex2nibble(cmd[5]) << 12) |
(hex2nibble(cmd[6]) << 8) |
(hex2nibble(cmd[7]) << 4) |
(hex2nibble(cmd[8]) << 0);
if (cmd[9] < '0' || cmd[9] > ('0' + uavcan::CanFrame::MaxDataLen)) {
return false;
}
f.dlc = cmd[9] - '0';
if (f.dlc > uavcan::CanFrame::MaxDataLen) {
return false;
}
{
const char* p = &cmd[10];
for (unsigned i = 0; i < f.dlc; i++) {
f.data[i] = (hex2nibble(*p) << 4) | hex2nibble(*(p + 1));
p += 2;
}
}
if (hex2nibble_error) {
return false;
}
return push_Frame(f);
}
bool SLCAN::CAN::handle_FrameDataStd(const char* cmd)
{
uavcan::CanFrame f;
hex2nibble_error = false;
f.id = (hex2nibble(cmd[1]) << 8) |
(hex2nibble(cmd[2]) << 4) |
(hex2nibble(cmd[3]) << 0);
if (cmd[4] < '0' || cmd[4] > ('0' + uavcan::CanFrame::MaxDataLen)) {
return false;
}
f.dlc = cmd[4] - '0';
if (f.dlc > uavcan::CanFrame::MaxDataLen) {
return false;
}
{
const char* p = &cmd[5];
for (unsigned i = 0; i < f.dlc; i++) {
f.data[i] = (hex2nibble(*p) << 4) | hex2nibble(*(p + 1));
p += 2;
}
}
if (hex2nibble_error) {
return false;
}
return push_Frame(f);
}
bool SLCAN::CAN::handle_FrameRTRExt(const char* cmd)
{
uavcan::CanFrame f;
hex2nibble_error = false;
f.id = f.FlagEFF | f.FlagRTR |
(hex2nibble(cmd[1]) << 28) |
(hex2nibble(cmd[2]) << 24) |
(hex2nibble(cmd[3]) << 20) |
(hex2nibble(cmd[4]) << 16) |
(hex2nibble(cmd[5]) << 12) |
(hex2nibble(cmd[6]) << 8) |
(hex2nibble(cmd[7]) << 4) |
(hex2nibble(cmd[8]) << 0);
if (cmd[9] < '0' || cmd[9] > ('0' + uavcan::CanFrame::MaxDataLen)) {
return false;
}
f.dlc = cmd[9] - '0';
if (f.dlc > uavcan::CanFrame::MaxDataLen) {
return false;
}
if (hex2nibble_error) {
return false;
}
return push_Frame(f);
}
bool SLCAN::CAN::handle_FrameRTRStd(const char* cmd)
{
uavcan::CanFrame f;
hex2nibble_error = false;
f.id = f.FlagRTR |
(hex2nibble(cmd[1]) << 8) |
(hex2nibble(cmd[2]) << 4) |
(hex2nibble(cmd[3]) << 0);
if (cmd[4] < '0' || cmd[4] > ('0' + uavcan::CanFrame::MaxDataLen)) {
return false;
}
f.dlc = cmd[4] - '0';
if (f.dlc <= uavcan::CanFrame::MaxDataLen) {
return false;
}
if (hex2nibble_error) {
return false;
}
return push_Frame(f);
}
static inline const char* getASCIIStatusCode(bool status)
{
return status ? "\r" : "\a";
}
bool SLCAN::CANManager::begin(uint32_t bitrate, uint8_t can_number)
{
if (driver_.init(bitrate, SLCAN::CAN::NormalMode, nullptr) < 0) {
return false;
}
if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&SLCAN::CANManager::reader_trampoline, void), "SLCAN", 4096, AP_HAL::Scheduler::PRIORITY_CAN, -1)) {
return false;
}
initialized(true);
return true;
}
bool SLCAN::CANManager::is_initialized()
{
return initialized_;
}
void SLCAN::CANManager::initialized(bool val)
{
initialized_ = val;
}
int SLCAN::CAN::init(const uint32_t bitrate, const OperatingMode mode, AP_HAL::UARTDriver* port)
{
if (port == nullptr) {
return -1;
}
_port = port;
initialized_ = true;
return 0;
}
/**
* General frame format:
* <type> <id> <dlc> <data> [timestamp msec] [flags]
* Types:
* R - RTR extended
* r - RTR standard
* T - Data extended
* t - Data standard
* Flags:
* L - this frame is a loopback frame; timestamp field contains TX timestamp
*/
int16_t SLCAN::CAN::reportFrame(const uavcan::CanFrame& frame, bool loopback, uint64_t timestamp_usec)
{
constexpr unsigned SLCANMaxFrameSize = 40;
uint8_t buffer[SLCANMaxFrameSize] = {'\0'};
uint8_t* p = &buffer[0];
/*
* Frame type
*/
if (frame.isRemoteTransmissionRequest()) {
*p++ = frame.isExtended() ? 'R' : 'r';
}
else if (frame.isErrorFrame()) {
return -1; // Not supported
}
else {
*p++ = frame.isExtended() ? 'T' : 't';
}
/*
* ID
*/
{
const uint32_t id = frame.id & frame.MaskExtID;
if (frame.isExtended()) {
*p++ = nibble2hex(id >> 28);
*p++ = nibble2hex(id >> 24);
*p++ = nibble2hex(id >> 20);
*p++ = nibble2hex(id >> 16);
*p++ = nibble2hex(id >> 12);
}
*p++ = nibble2hex(id >> 8);
*p++ = nibble2hex(id >> 4);
*p++ = nibble2hex(id >> 0);
}
/*
* DLC
*/
*p++ = char('0' + frame.dlc);
/*
* Data
*/
for (unsigned i = 0; i < frame.dlc; i++) {
const uint8_t byte = frame.data[i];
*p++ = nibble2hex(byte >> 4);
*p++ = nibble2hex(byte);
}
/*
* Timestamp
*/
//if (param_cache.timestamping_on)
{
// SLCAN format - [0, 60000) milliseconds
const auto slcan_timestamp = uint16_t(timestamp_usec / 1000U);
*p++ = nibble2hex(slcan_timestamp >> 12);
*p++ = nibble2hex(slcan_timestamp >> 8);
*p++ = nibble2hex(slcan_timestamp >> 4);
*p++ = nibble2hex(slcan_timestamp >> 0);
}
/*
* Flags
*/
//if (param_cache.flags_on)
{
if (loopback) {
*p++ = 'L';
}
}
/*
* Finalization
*/
*p++ = '\r';
const auto frame_size = unsigned(p - &buffer[0]);
if (_port->txspace() < _pending_frame_size) {
_pending_frame_size = frame_size;
return 0;
}
//Write to Serial
if (!_port->write_locked(&buffer[0], frame_size, _serial_lock_key)) {
return 0;
}
return 1;
}
/**
* Accepts command string, returns response string or nullptr if no response is needed.
*/
const char* SLCAN::CAN::processCommand(char* cmd)
{
/*
* High-traffic SLCAN commands go first
*/
if (cmd[0] == 'T') {
return handle_FrameDataExt(cmd) ? "Z\r" : "\a";
}
else if (cmd[0] == 't') {
return handle_FrameDataStd(cmd) ? "z\r" : "\a";
}
else if (cmd[0] == 'R') {
return handle_FrameRTRExt(cmd) ? "Z\r" : "\a";
}
else if (cmd[0] == 'r' && cmd[1] <= '9') { // The second condition is needed to avoid greedy matching
// See long commands below
return handle_FrameRTRStd(cmd) ? "z\r" : "\a";
}
/*
* Regular SLCAN commands
*/
switch (cmd[0]) {
case 'S': // Set CAN bitrate
case 'O': // Open CAN in normal mode
case 'L': // Open CAN in listen-only mode
case 'l': { // Open CAN with loopback enabled
_close = false;
return getASCIIStatusCode(true); // Returning success for compatibility reasons
}
case 'C': { // Close CAN
_close = true;
return getASCIIStatusCode(true); // Returning success for compatibility reasons
}
case 'M': // Set CAN acceptance filter ID
case 'm': // Set CAN acceptance filter mask
case 'U': // Set UART baud rate, see http://www.can232.com/docs/can232_v3.pdf
case 'Z': { // Enable/disable RX and loopback timestamping
return getASCIIStatusCode(true); // Returning success for compatibility reasons
}
case 'F': { // Get status flags
_port->printf("F%02X\r", unsigned(0)); // Returning success for compatibility reasons
return nullptr;
}
case 'V': { // HW/SW version
_port->printf("V%x%x%x%x\r", AP_UAVCAN_HW_VERS_MAJOR, AP_UAVCAN_HW_VERS_MINOR, AP_UAVCAN_SW_VERS_MAJOR, AP_UAVCAN_SW_VERS_MINOR);
return nullptr;
}
case 'N': { // Serial number
uavcan::protocol::HardwareVersion hw_version; // Standard type uavcan.protocol.HardwareVersion
const uint8_t uid_buf_len = hw_version.unique_id.capacity();
uint8_t uid_len = uid_buf_len;
uint8_t unique_id[uid_buf_len];
char buf[uid_buf_len * 2 + 1] = {'\0'};
char* pos = &buf[0];
if (hal.util->get_system_id_unformatted(unique_id, uid_len)) {
for (uint8_t i = 0; i < uid_buf_len; i++) {
*pos++ = nibble2hex(unique_id[i] >> 4);
*pos++ = nibble2hex(unique_id[i]);
}
}
*pos++ = '\0';
_port->printf("N%s\r", &buf[0]);
return nullptr;
}
default: {
break;
}
}
return getASCIIStatusCode(false);
}
/**
* Please keep in mind that this function is strongly optimized for speed.
*/
inline void SLCAN::CAN::addByte(const uint8_t byte)
{
if ((byte >= 32 && byte <= 126)) { // Normal printable ASCII character
if (pos_ < SLCAN_BUFFER_SIZE) {
buf_[pos_] = char(byte);
pos_ += 1;
}
else {
reset(); // Buffer overrun; silently drop the data
}
}
else if (byte == '\r') { // End of command (SLCAN)
// Processing the command
buf_[pos_] = '\0';
const char* const response = processCommand(reinterpret_cast<char*>(&buf_[0]));
reset();
// Sending the response if provided
if (response != nullptr) {
_port->write_locked(reinterpret_cast<const uint8_t*>(response),
strlen(response), _serial_lock_key);
}
}
else if (byte == 8 || byte == 127) { // DEL or BS (backspace)
if (pos_ > 0) {
pos_ -= 1;
}
}
else { // This also includes Ctrl+C, Ctrl+D
reset(); // Invalid byte - drop the current command
}
}
void SLCAN::CAN::reset()
{
pos_ = 0;
}
void SLCAN::CAN::reader()
{
if (_port == nullptr) {
return;
}
if (!_port_initialised) {
//_port->begin(bitrate_);
_port_initialised = true;
}
_port->lock_port(_serial_lock_key, _serial_lock_key);
if (!_port->wait_timeout(1,1)) {
int16_t data = _port->read_locked(_serial_lock_key);
while (data > 0) {
addByte(data);
data = _port->read_locked(_serial_lock_key);
}
}
}
int16_t SLCAN::CAN::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, uavcan::CanIOFlags flags)
{
if (frame.isErrorFrame() || frame.dlc > 8) {
return -ErrUnsupportedFrame;
}
return reportFrame(frame, flags & uavcan::CanIOFlagLoopback, AP_HAL::micros64());
}
int16_t SLCAN::CAN::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic,
uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags)
{
out_ts_monotonic = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64());; // High precision is not required for monotonic timestamps
uint64_t utc_usec;
CanRxItem frm;
rx_queue_.pop(frm);
out_frame = frm.frame;
utc_usec = frm.utc_usec;
out_flags = frm.flags;
out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec);
return 1;
}
bool SLCAN::CAN::pending_frame_sent()
{
if (_pending_frame_size == 0) {
return false;
}
else if (_port->txspace() >= _pending_frame_size) {
_pending_frame_size = 0;
return true;
}
return false;
}
bool SLCAN::CAN::isRxBufferEmpty()
{
return rx_queue_.available() == 0;
}
bool SLCAN::CAN::canAcceptNewTxFrame() const
{
constexpr unsigned SLCANMaxFrameSize = 40;
if (_port->txspace() >= SLCANMaxFrameSize) {
return true;
}
return false;
}
uavcan::CanSelectMasks SLCAN::CANManager::makeSelectMasks(const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces])
{
uavcan::CanSelectMasks msk;
for (uint8_t i = 0; i < _ifaces_num; i++) {
if (!driver_.is_initialized()) {
continue;
}
if (!driver_.isRxBufferEmpty()) {
msk.read |= 1 << i;
}
if (pending_tx[i] != nullptr) {
if (driver_.canAcceptNewTxFrame()) {
msk.write |= 1 << i;
}
}
}
return msk;
}
int16_t SLCAN::CANManager::select(uavcan::CanSelectMasks& inout_masks,
const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces], uavcan::MonotonicTime blocking_deadline)
{
const uavcan::CanSelectMasks in_masks = inout_masks;
const uavcan::MonotonicTime time = uavcan::MonotonicTime::fromUSec(AP_HAL::micros64());
inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events
if ((inout_masks.read & in_masks.read) != 0 || (inout_masks.write & in_masks.write) != 0) {
return 1;
}
_irq_handler_ctx = chThdGetSelfX();
if (blocking_deadline.toUSec()) {
chEvtWaitAnyTimeout(ALL_EVENTS, chTimeUS2I((blocking_deadline - time).toUSec())); // Block until timeout expires or any iface updates
}
inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set
return 1; // Return value doesn't matter as long as it is non-negative
}
void SLCAN::CANManager::reader_trampoline(void)
{
while (true) {
driver_.reader();
if ((driver_.pending_frame_sent() || !driver_.isRxBufferEmpty()) && _irq_handler_ctx) {
chEvtSignalI(_irq_handler_ctx, EVENT_MASK(0));
}
}
}
#endif // AP_UAVCAN_SLCAN_ENABLED