AP_NavEKF3: Add emergency yaw reset using a Gussian Sum Filter estimate
AP_NavEKF3: Reduce default minimum GPS velocity noise for Copters
Enables fail-safe to be set with more sensitivity and improves tracking accuracy.
Origin values were set using typical GPS performance for receivers on sale 6 years ago. Receiver performance has improved since then.
AP_NavEKF3: Prevent constant mag anomaly yaw resets
Prevents constant magnetic anomaly induced resets that can be triggered when flying with vehicle generated magnetic interference.
Allows for two resets per takeoff. Allowance for two resets is required, becasue a large ground based magnetic yaw anomaly can cause a sufficiently large yaw innovation that two resets in close succession are required.
AP_NavEKF3: Add option to fly without magnetometer
AP_NavEKF3: Rework emergency yaw reset logic
Use a separate external accessor function to request the yaw reset.
Allow reset requests to remain active for a defined period of time.
Tidy up reset function to split out accuracy check.
AP_NavEKF3: Fix vulnerability to lane switch race condition
Prevents the situation where a lane switch results in a lane being selected that does not have the correct yaw. This can occur if the primary lane becomes unhealthy before the external failsafe monitor has time to react.
AP_NavEKF3: Fix EKF_MAG_CAL = 6 behaviours
Fix bug causing the yaw alignment to be performed at startup before the GSF had a valid estimate.
Fix bug causing emergency yaw message to be output for a normal reset.
Fix vulnerability to reported negative yaw variance.
Remove duplicate timer checks.
AP_NavEKF3: Update EK3_MAG_CAL documentation
AP_NavEKF3: Relax yaw gyro bias convergence check when not using mag
AP_NavEKF3: Reduce yaw drift in hover with no yaw sensor
Uses the GSF yaw estimate if available which is better than the EKF's own yaw when no yaw sensor is available.
this allows for a magnetometer to be used as a fallback yaw source in
flight when using an external yaw source such as a GPS. The
magnetometer bias is learned while the GPS yaw is available and
fallback is only done if the mag yaw and GPS yaw are consistent when
fallback is enabled
This also learns the Z gyro bias until first yaw alignment when
MAG_CAL is EXTERNAL_YAW_FALLBACK. This prevents large gyro bias
building while waiting for GPS lock
Adapted from EKF2 implementation as of commits
3835d2613, e9ed3540f and df4fc0fff
this sets a limit on the difference between the earth field from the
WMM tables and the learned earth field inside the EKF. Setting it to
zero disables the feature. A positive value sets the limit in mGauss.
GPS modules tend to be rather optimistic about their yaw accuracy. By
setting a min or 5 degrees we prevent the user constantly getting
warnings about yaw innovations
this prevents the EKF origin on different cores from being initialised
to different values. A common value is stored in the frontend and used
by a core if it doesn't have an origin
when we had 3 compasses the lack of the 'break' meant when we switched
compass in flight we would always switch back instantly to the one
that we had just rejected.
Fix rounding error bug preventing state from updating after initial convergence.
Decouple GPS reference height from published EKf origin height.
Add bitmask parameter to control update and publishing of GPS reference height.
this changes the stragegy for load levelling between EKF cores so it
works between EK2 and EK3, and with future estimators as well.
It allows us to run EK3 and EK2 at the same time with good scheduling
performance
Prevent bad values for GPS time delay pushing the GPS time stamp outside the range of IMU data contained in the buffer. If this occurs it can prevent the GPS measurements from being fused and cause loss of navigation.
Use the time delay returned by the GPS driver.
Wait long enough for the GPS configuration to be determined, but time out after 30 seconds and warn the user that a default value for time delay will be used.
Switch to use of an airspeed reading averaged across the raw sensor readings. since the last update.
This avoids use of the IIR which requires a larger time delay compensation and violates the assumption of uncorrelated noise.
The time delay parameter has been reduced to compensate for the removal of the airspeed IIR filtering.
Adapt the lengths of the IMU and observations buffers on startup to the specified time delays and update rates.
This does require the EKF to be re-started if time delays are changed.
AP_NavEKF3: Implement same maths as PX4/ecl EKF
Replace attitude vector states with quaternions
Remove gyro scale factor states
Add XY accel delta velocity bias estimation
Initial tuning
Add GPS body frame offset compensation
AP_NavEKF3: Fix bugs and consolidate aiding switch logic
Switching in and out of aiding modes was being performed in more than one place and was using two variables.
The reversion out of GPS mode due to prolonged loss of GPS was not working.
This consolidates the logic and ensures that PV_AidingMode is only changed by the setAidingMode function.
AP_NavEKF3: prevent multiple fusion mode changes per filter update
AP_NavEKF3: Update tuning defaults
AP_NavEKF3: Fix bug causing switching in and out of aiding
If the GPS receiver was disconnected and no data received, then then the gpsGoodToAlign check did not get a chance to run and becasue it was previously true the EKF would switch back into aiding.
This prevents this by ensuring that gpsGoodToAlign defaults to false when the check is not being performed.
An additional check has also been dded to ensure that there is GPS data to fuse before we declare ready to use GPS.
AP_NavEKF3: Fix bug preventing planes recovering from bad magnetometers
This bug created a race condition whereby if the EKF had to reset the yaw to the GPS ground course to recover from a bad magnetometer, the new heading could be over-written by the bad magnetic heading when the plane reached the height for the scheduled reset.
AP_NavEKF3: Improve switch-over to backup magnetometer
When switching over to a back up magnetometer, ensure that the earth field estimate are reset. Otherwise mag earth field estimates due to the previous failed mag could cause data from the new mag to be rejected.
AP_NavEKF3: enable automatic use of range finder height
AP_NavEKF3: Fix bug in handling of invalid range data
AP_NavEKF3: Fix height drift on ground using range finder without GPSAP_NavEKF3:
AP_NavEKF3: Handle yaw jumps due to core switches
AP_NavEKF3: Enable simultaneous GPS and optical flow use
AP_NavEKF3: fix console status reporting
AP_NavEKF3: send messages to mavlink instead of console
This allows the GCS to better handle the display of messages to the user.
AP_NavEKF3: replace deprecated function call
AP_NavEKF3: Compensate for sensor body frame offsets
AP_NavEKF3: Fix bug in median filter code
AP_NavEKF3: save some memory in the position offsets in EKF3
We don't need to copy that vector3f for every sample. A uint8_t does the job
AP_NavEKF3: Add fusion of range beacon data
AP_NavEKF3: Bring up to date with EKF2
AP_NavEKF3: Misc range beacon updates
AP_NavEKF3: Add mising accessors
AP_NavEKF3: remove duplicate include
AP_NavEKF3: Prevent NaN's when accessing range beacon debug data
AP_NavEKF3: Update range beacon naming
AP_NavEKF3: updates
AP_NavEKF3: miscellaneous changes
AP_NavEKF3: misc updates
AP_NavEKF3: misc range beacons updates
AP_NavEKF3: add missing rover default param