AP_OpticalFlow: Add support for Linux

Add a Linux userspace driver for the PX4FLOW sensor.
This commit is contained in:
Víctor Mayoral Vilches 2015-04-19 15:26:48 +02:00 committed by Randy Mackay
parent 42c7b4a116
commit ed3366aaae
4 changed files with 298 additions and 0 deletions

View File

@ -0,0 +1,199 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_OpticalFlow_Linux.cpp - ardupilot library for the PX4Flow sensor.
* inspired by the PX4Firmware code.
*
* @author: Víctor Mayoral Vilches
*
*/
#include <AP_HAL.h>
#include "OpticalFlow.h"
#define DEBUG 1
#define RAW_READ 0
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
extern const AP_HAL::HAL& hal;
AP_OpticalFlow_Linux::AP_OpticalFlow_Linux(OpticalFlow &_frontend) :
OpticalFlow_backend(_frontend)
{}
void AP_OpticalFlow_Linux::init(void)
{
uint8_t buff[22];
// get pointer to i2c bus semaphore
AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore();
// take i2c bus sempahore
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
hal.scheduler->panic(PSTR("PX4FLOW: unable to get semaphore"));
}
// to be sure this is not a ll40ls Lidar (which can also be on
// 0x42) we check if a I2C_FRAME_SIZE byte transfer works from address
// 0. The ll40ls gives an error for that, whereas the flow
// happily returns some data
uint8_t val[I2C_FRAME_SIZE];
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, 0, I2C_FRAME_SIZE, val))
hal.scheduler->panic(PSTR("ll40ls Lidar"));
i2c_sem->give();
}
int AP_OpticalFlow_Linux::read(optical_flow_s* report)
{
// get pointer to i2c bus semaphore
AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore();
// take i2c bus sempahore
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
hal.scheduler->panic(PSTR("PX4FLOW: unable to get semaphore"));
}
uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = { 0 };
#if RAW_READ
hal.console->printf_P(PSTR("PX4FLOW: RAW_READ"));
// Send the command to begin a measurement
uint8_t cmd = PX4FLOW_REG;
if (hal.i2c->write(I2C_FLOW_ADDRESS, 1, &cmd)){
hal.console->printf_P(PSTR("PX4FLOW: Error while beginning a measurement"));
i2c_sem->give();
return 0;
}
// Perform the reading
if (PX4FLOW_REG == 0x00) {
if (hal.i2c->read(I2C_FLOW_ADDRESS, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val)){
hal.console->printf_P(PSTR("PX4FLOW: Error while reading"));
i2c_sem->give();
return 0;
}
}
if (PX4FLOW_REG == 0x16) {
if (hal.i2c->read(I2C_FLOW_ADDRESS, I2C_INTEGRAL_FRAME_SIZE, val)){
hal.console->printf_P(PSTR("PX4FLOW: Error while reading"));
i2c_sem->give();
return 0;
}
}
#else
// Perform the writing and reading in a single command
if (PX4FLOW_REG == 0x00) {
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, PX4FLOW_REG, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val)){
hal.console->printf_P(PSTR("PX4FLOW: Error while reading"));
i2c_sem->give();
return 0;
}
}
if (PX4FLOW_REG == 0x16) {
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, PX4FLOW_REG, I2C_INTEGRAL_FRAME_SIZE, val)){
hal.console->printf_P(PSTR("PX4FLOW: Error while reading"));
i2c_sem->give();
return 0;
}
}
#endif
if (PX4FLOW_REG == 0) {
memcpy(&f, val, I2C_FRAME_SIZE);
memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE);
}
if (PX4FLOW_REG == 0x16) {
memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE);
}
// report->timestamp = hrt_absolute_time();
report->pixel_flow_x_integral = static_cast<float>(f_integral.pixel_flow_x_integral) / 10000.0f;//convert to radians
report->pixel_flow_y_integral = static_cast<float>(f_integral.pixel_flow_y_integral) / 10000.0f;//convert to radians
report->frame_count_since_last_readout = f_integral.frame_count_since_last_readout;
report->ground_distance_m = static_cast<float>(f_integral.ground_distance) / 1000.0f;//convert to meters
report->quality = f_integral.qual; //0:bad ; 255 max quality
report->gyro_x_rate_integral = static_cast<float>(f_integral.gyro_x_rate_integral) / 10000.0f; //convert to radians
report->gyro_y_rate_integral = static_cast<float>(f_integral.gyro_y_rate_integral) / 10000.0f; //convert to radians
report->gyro_z_rate_integral = static_cast<float>(f_integral.gyro_z_rate_integral) / 10000.0f; //convert to radians
report->integration_timespan = f_integral.integration_timespan; //microseconds
report->time_since_last_sonar_update = f_integral.sonar_timestamp;//microseconds
report->gyro_temperature = f_integral.gyro_temperature;//Temperature * 100 in centi-degrees Celsius
report->sensor_id = 0;
hal.console->printf_P(PSTR("PX4FLOW measurement: ground_distance_m: %f\n"), report->ground_distance_m);
/*
// rotate measurements according to parameter
float zeroval = 0.0f;
rotate_3f(_sensor_rotation, report.pixel_flow_x_integral, report.pixel_flow_y_integral, zeroval);
*/
i2c_sem->give();
return 1;
}
// update - read latest values from sensor and fill in x,y and totals.
void AP_OpticalFlow_Linux::update(void)
{
struct optical_flow_s report;
// read the report from the sensor
read(&report);
// process
struct OpticalFlow::OpticalFlow_state state;
state.device_id = report.sensor_id;
state.surface_quality = report.quality;
if (report.integration_timespan > 0) {
const Vector2f flowScaler = _flowScaler();
float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x;
float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y;
float integralToRate = 1e6f / float(report.integration_timespan);
state.flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis
state.flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis
state.bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis
state.bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis
} else {
state.flowRate.zero();
state.bodyRate.zero();
}
#if DEBUG
hal.console->printf_P(PSTR("PX4FLOW print: sensor_id: %d\n"), state.device_id);
hal.console->printf_P(PSTR("PX4FLOW print: surface_quality: %d\n"), state.surface_quality);
hal.console->printf_P(PSTR("PX4FLOW print: flowRate.x: %d\n"), state.flowRate.x);
hal.console->printf_P(PSTR("PX4FLOW print: flowRate.y: %d\n"), state.flowRate.y);
hal.console->printf_P(PSTR("PX4FLOW print: bodyRate.x: %d\n"), state.bodyRate.x);
hal.console->printf_P(PSTR("PX4FLOW print: bodyRate.y: %d\n"), state.bodyRate.y);
#endif
_update_frontend(state);
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_LINUX

View File

@ -0,0 +1,96 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef AP_OpticalFlow_Linux_H
#define AP_OpticalFlow_Linux_H
#include "OpticalFlow.h"
#include <AP_Math.h>
/* Configuration Constants */
#define I2C_FLOW_ADDRESS 0x42 ///< 7-bit address. 8-bit address is 0x84, range 0x42 - 0x49
/* PX4FLOW Registers addresses */
#define PX4FLOW_REG 0x16 ///< Measure Register 22
#define PX4FLOW_CONVERSION_INTERVAL 100000 ///< in microseconds! 20000 = 50 Hz 100000 = 10Hz
#define PX4FLOW_I2C_MAX_BUS_SPEED 400000 ///< 400 KHz maximum speed
typedef struct i2c_frame
{
uint16_t frame_count;
int16_t pixel_flow_x_sum;
int16_t pixel_flow_y_sum;
int16_t flow_comp_m_x;
int16_t flow_comp_m_y;
int16_t qual;
int16_t gyro_x_rate;
int16_t gyro_y_rate;
int16_t gyro_z_rate;
uint8_t gyro_range;
uint8_t sonar_timestamp;
int16_t ground_distance;
} i2c_frame;
#define I2C_FRAME_SIZE (sizeof(i2c_frame))
typedef struct i2c_integral_frame
{
uint16_t frame_count_since_last_readout;
int16_t pixel_flow_x_integral;
int16_t pixel_flow_y_integral;
int16_t gyro_x_rate_integral;
int16_t gyro_y_rate_integral;
int16_t gyro_z_rate_integral;
uint32_t integration_timespan;
uint32_t sonar_timestamp;
uint16_t ground_distance;
int16_t gyro_temperature;
uint8_t qual;
} i2c_integral_frame;
#define I2C_INTEGRAL_FRAME_SIZE (sizeof(i2c_integral_frame))
/**
* Optical flow in NED body frame in SI units.
*
* @see http://en.wikipedia.org/wiki/International_System_of_Units
*/
struct optical_flow_s {
uint64_t timestamp; /**< in microseconds since system start */
uint8_t sensor_id; /**< id of the sensor emitting the flow value */
float pixel_flow_x_integral; /**< accumulated optical flow in radians around x axis */
float pixel_flow_y_integral; /**< accumulated optical flow in radians around y axis */
float gyro_x_rate_integral; /**< accumulated gyro value in radians around x axis */
float gyro_y_rate_integral; /**< accumulated gyro value in radians around y axis */
float gyro_z_rate_integral; /**< accumulated gyro value in radians around z axis */
float ground_distance_m; /**< Altitude / distance to ground in meters */
uint32_t integration_timespan; /**<accumulation timespan in microseconds */
uint32_t time_since_last_sonar_update;/**< time since last sonar update in microseconds */
uint16_t frame_count_since_last_readout;/**< number of accumulated frames in timespan */
int16_t gyro_temperature;/**< Temperature * 100 in centi-degrees Celsius */
uint8_t quality; /**< Average of quality of accumulated frames, 0: bad quality, 255: maximum quality */
};
class AP_OpticalFlow_Linux : public OpticalFlow_backend
{
public:
/// constructor
AP_OpticalFlow_Linux(OpticalFlow &_frontend);
// init - initialise the sensor
void init();
// update - read latest values from sensor and fill in x,y and totals.
void update(void);
private:
int read(optical_flow_s* report);
void print(optical_flow_s* report);
struct i2c_frame f;
struct i2c_integral_frame f_integral;
};
#endif

View File

@ -46,6 +46,8 @@ OpticalFlow::OpticalFlow(void) :
backend(new AP_OpticalFlow_PX4(*this)), backend(new AP_OpticalFlow_PX4(*this)),
#elif CONFIG_HAL_BOARD == HAL_BOARD_SITL #elif CONFIG_HAL_BOARD == HAL_BOARD_SITL
backend(new AP_OpticalFlow_HIL(*this)), backend(new AP_OpticalFlow_HIL(*this)),
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX
backend(new AP_OpticalFlow_Linux(*this)),
#else #else
backend(NULL), backend(NULL),
#endif #endif

View File

@ -96,5 +96,6 @@ private:
#include "OpticalFlow_backend.h" #include "OpticalFlow_backend.h"
#include "AP_OpticalFlow_HIL.h" #include "AP_OpticalFlow_HIL.h"
#include "AP_OpticalFlow_PX4.h" #include "AP_OpticalFlow_PX4.h"
#include "AP_OpticalFlow_Linux.h"
#endif #endif