diff --git a/libraries/AP_OpticalFlow/AP_OpticalFlow_Linux.cpp b/libraries/AP_OpticalFlow/AP_OpticalFlow_Linux.cpp new file mode 100644 index 0000000000..2f426abdbe --- /dev/null +++ b/libraries/AP_OpticalFlow/AP_OpticalFlow_Linux.cpp @@ -0,0 +1,199 @@ +/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- +/* + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + */ + +/* + * AP_OpticalFlow_Linux.cpp - ardupilot library for the PX4Flow sensor. + * inspired by the PX4Firmware code. + * + * @author: VĂ­ctor Mayoral Vilches + * + */ + +#include +#include "OpticalFlow.h" + +#define DEBUG 1 +#define RAW_READ 0 + +#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX +extern const AP_HAL::HAL& hal; + +AP_OpticalFlow_Linux::AP_OpticalFlow_Linux(OpticalFlow &_frontend) : + OpticalFlow_backend(_frontend) +{} + + +void AP_OpticalFlow_Linux::init(void) +{ + uint8_t buff[22]; + + // get pointer to i2c bus semaphore + AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); + + // take i2c bus sempahore + if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { + hal.scheduler->panic(PSTR("PX4FLOW: unable to get semaphore")); + } + + // to be sure this is not a ll40ls Lidar (which can also be on + // 0x42) we check if a I2C_FRAME_SIZE byte transfer works from address + // 0. The ll40ls gives an error for that, whereas the flow + // happily returns some data + uint8_t val[I2C_FRAME_SIZE]; + if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, 0, I2C_FRAME_SIZE, val)) + hal.scheduler->panic(PSTR("ll40ls Lidar")); + + i2c_sem->give(); + +} + +int AP_OpticalFlow_Linux::read(optical_flow_s* report) +{ + // get pointer to i2c bus semaphore + AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); + + // take i2c bus sempahore + if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { + hal.scheduler->panic(PSTR("PX4FLOW: unable to get semaphore")); + } + + + uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = { 0 }; + +#if RAW_READ + hal.console->printf_P(PSTR("PX4FLOW: RAW_READ")); + // Send the command to begin a measurement + uint8_t cmd = PX4FLOW_REG; + if (hal.i2c->write(I2C_FLOW_ADDRESS, 1, &cmd)){ + hal.console->printf_P(PSTR("PX4FLOW: Error while beginning a measurement")); + i2c_sem->give(); + return 0; + } + + // Perform the reading + if (PX4FLOW_REG == 0x00) { + if (hal.i2c->read(I2C_FLOW_ADDRESS, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val)){ + hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); + i2c_sem->give(); + return 0; + } + } + + if (PX4FLOW_REG == 0x16) { + if (hal.i2c->read(I2C_FLOW_ADDRESS, I2C_INTEGRAL_FRAME_SIZE, val)){ + hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); + i2c_sem->give(); + return 0; + } + } + +#else + // Perform the writing and reading in a single command + if (PX4FLOW_REG == 0x00) { + if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, PX4FLOW_REG, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val)){ + hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); + i2c_sem->give(); + return 0; + } + } + + if (PX4FLOW_REG == 0x16) { + if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, PX4FLOW_REG, I2C_INTEGRAL_FRAME_SIZE, val)){ + hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); + i2c_sem->give(); + return 0; + } + } +#endif + + + if (PX4FLOW_REG == 0) { + memcpy(&f, val, I2C_FRAME_SIZE); + memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE); + } + + if (PX4FLOW_REG == 0x16) { + memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE); + } + + // report->timestamp = hrt_absolute_time(); + report->pixel_flow_x_integral = static_cast(f_integral.pixel_flow_x_integral) / 10000.0f;//convert to radians + report->pixel_flow_y_integral = static_cast(f_integral.pixel_flow_y_integral) / 10000.0f;//convert to radians + report->frame_count_since_last_readout = f_integral.frame_count_since_last_readout; + report->ground_distance_m = static_cast(f_integral.ground_distance) / 1000.0f;//convert to meters + report->quality = f_integral.qual; //0:bad ; 255 max quality + report->gyro_x_rate_integral = static_cast(f_integral.gyro_x_rate_integral) / 10000.0f; //convert to radians + report->gyro_y_rate_integral = static_cast(f_integral.gyro_y_rate_integral) / 10000.0f; //convert to radians + report->gyro_z_rate_integral = static_cast(f_integral.gyro_z_rate_integral) / 10000.0f; //convert to radians + report->integration_timespan = f_integral.integration_timespan; //microseconds + report->time_since_last_sonar_update = f_integral.sonar_timestamp;//microseconds + report->gyro_temperature = f_integral.gyro_temperature;//Temperature * 100 in centi-degrees Celsius + + report->sensor_id = 0; + + hal.console->printf_P(PSTR("PX4FLOW measurement: ground_distance_m: %f\n"), report->ground_distance_m); + +/* + // rotate measurements according to parameter + float zeroval = 0.0f; + rotate_3f(_sensor_rotation, report.pixel_flow_x_integral, report.pixel_flow_y_integral, zeroval); +*/ + + i2c_sem->give(); + return 1; + +} + +// update - read latest values from sensor and fill in x,y and totals. +void AP_OpticalFlow_Linux::update(void) +{ + struct optical_flow_s report; + + // read the report from the sensor + read(&report); + + // process + struct OpticalFlow::OpticalFlow_state state; + state.device_id = report.sensor_id; + state.surface_quality = report.quality; + if (report.integration_timespan > 0) { + const Vector2f flowScaler = _flowScaler(); + float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x; + float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y; + float integralToRate = 1e6f / float(report.integration_timespan); + state.flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis + state.flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis + state.bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis + state.bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis + } else { + state.flowRate.zero(); + state.bodyRate.zero(); + } + +#if DEBUG + hal.console->printf_P(PSTR("PX4FLOW print: sensor_id: %d\n"), state.device_id); + hal.console->printf_P(PSTR("PX4FLOW print: surface_quality: %d\n"), state.surface_quality); + hal.console->printf_P(PSTR("PX4FLOW print: flowRate.x: %d\n"), state.flowRate.x); + hal.console->printf_P(PSTR("PX4FLOW print: flowRate.y: %d\n"), state.flowRate.y); + hal.console->printf_P(PSTR("PX4FLOW print: bodyRate.x: %d\n"), state.bodyRate.x); + hal.console->printf_P(PSTR("PX4FLOW print: bodyRate.y: %d\n"), state.bodyRate.y); +#endif + _update_frontend(state); +} + + + +#endif // CONFIG_HAL_BOARD == HAL_BOARD_LINUX diff --git a/libraries/AP_OpticalFlow/AP_OpticalFlow_Linux.h b/libraries/AP_OpticalFlow/AP_OpticalFlow_Linux.h new file mode 100644 index 0000000000..a2fcbba562 --- /dev/null +++ b/libraries/AP_OpticalFlow/AP_OpticalFlow_Linux.h @@ -0,0 +1,96 @@ +/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- + +#ifndef AP_OpticalFlow_Linux_H +#define AP_OpticalFlow_Linux_H + +#include "OpticalFlow.h" + +#include + +/* Configuration Constants */ +#define I2C_FLOW_ADDRESS 0x42 ///< 7-bit address. 8-bit address is 0x84, range 0x42 - 0x49 + +/* PX4FLOW Registers addresses */ +#define PX4FLOW_REG 0x16 ///< Measure Register 22 + +#define PX4FLOW_CONVERSION_INTERVAL 100000 ///< in microseconds! 20000 = 50 Hz 100000 = 10Hz +#define PX4FLOW_I2C_MAX_BUS_SPEED 400000 ///< 400 KHz maximum speed + +typedef struct i2c_frame +{ + uint16_t frame_count; + int16_t pixel_flow_x_sum; + int16_t pixel_flow_y_sum; + int16_t flow_comp_m_x; + int16_t flow_comp_m_y; + int16_t qual; + int16_t gyro_x_rate; + int16_t gyro_y_rate; + int16_t gyro_z_rate; + uint8_t gyro_range; + uint8_t sonar_timestamp; + int16_t ground_distance; +} i2c_frame; + +#define I2C_FRAME_SIZE (sizeof(i2c_frame)) + + +typedef struct i2c_integral_frame +{ + uint16_t frame_count_since_last_readout; + int16_t pixel_flow_x_integral; + int16_t pixel_flow_y_integral; + int16_t gyro_x_rate_integral; + int16_t gyro_y_rate_integral; + int16_t gyro_z_rate_integral; + uint32_t integration_timespan; + uint32_t sonar_timestamp; + uint16_t ground_distance; + int16_t gyro_temperature; + uint8_t qual; +} i2c_integral_frame; + +#define I2C_INTEGRAL_FRAME_SIZE (sizeof(i2c_integral_frame)) + +/** + * Optical flow in NED body frame in SI units. + * + * @see http://en.wikipedia.org/wiki/International_System_of_Units + */ +struct optical_flow_s { + + uint64_t timestamp; /**< in microseconds since system start */ + uint8_t sensor_id; /**< id of the sensor emitting the flow value */ + float pixel_flow_x_integral; /**< accumulated optical flow in radians around x axis */ + float pixel_flow_y_integral; /**< accumulated optical flow in radians around y axis */ + float gyro_x_rate_integral; /**< accumulated gyro value in radians around x axis */ + float gyro_y_rate_integral; /**< accumulated gyro value in radians around y axis */ + float gyro_z_rate_integral; /**< accumulated gyro value in radians around z axis */ + float ground_distance_m; /**< Altitude / distance to ground in meters */ + uint32_t integration_timespan; /**