AHRS: brought DCM more inline with Bill's implementation

omega_I applied continuously. _ki larger. Stop integrating when _omega.length()>20

The key change was the scaling of ge to ensure the error is not
quadratic
This commit is contained in:
Jonathan Challinger 2012-06-16 14:44:31 -07:00 committed by Andrew Tridgell
parent 2934b4173b
commit d230690b7b
2 changed files with 112 additions and 95 deletions

View File

@ -310,7 +310,8 @@ AP_AHRS_DCM::drift_correction_compass(float deltat)
// setup the z component of the total drift error in earth // setup the z component of the total drift error in earth
// frame. This is then used by the main drift correction code // frame. This is then used by the main drift correction code
_drift_error_earth.z = constrain(error.z, -0.4, 0.4); _drift_error_earth.z = error.z*70; //constrain(error.z, -0.4, 0.4);
//TODO: figure out proper error scaling instead of using 70
_error_yaw_sum += fabs(_drift_error_earth.z); _error_yaw_sum += fabs(_drift_error_earth.z);
_error_yaw_count++; _error_yaw_count++;
@ -330,106 +331,123 @@ AP_AHRS_DCM::drift_correction_compass(float deltat)
void void
AP_AHRS_DCM::drift_correction(float deltat) AP_AHRS_DCM::drift_correction(float deltat)
{ {
Vector3f error; Vector3f error;
Vector3f gps_velocity;
bool nogps=false;
uint32_t last_correction_time;
// if we don't have a working GPS then use the old style if(_omega.length() < ToRad(20))
// of drift correction _omega_I += _omega_I_delta * deltat;
if (_gps == NULL || _gps->status() != GPS::GPS_OK) {
//drift_correction_old(deltat);
return;
}
// perform yaw drift correction if we have a new yaw reference // perform yaw drift correction if we have a new yaw reference
// vector // vector
drift_correction_compass(deltat); drift_correction_compass(deltat);
// scale the accel vector so it is in 1g units. This brings it // scale the accel vector so it is in 1g units. This brings it
// into line with the mag vector, allowing the two to be combined // into line with the mag vector, allowing the two to be combined
_accel_vector *= (deltat / _gravity); _accel_vector *= (deltat / _gravity);
// integrate the accel vector in the earth frame between GPS readings // integrate the accel vector in the earth frame between GPS readings
_ra_sum += _dcm_matrix * _accel_vector; _ra_sum += _dcm_matrix * _accel_vector;
// keep a sum of the deltat values, so we know how much time // keep a sum of the deltat values, so we know how much time
// we have integrated over // we have integrated over
_ra_deltat += deltat; _ra_deltat += deltat;
// see if we have a new GPS reading if (_gps == NULL || _gps->status() != GPS::GPS_OK) {
if (_gps->last_fix_time == _ra_sum_start) { // no GPS, or no lock. We assume zero velocity. This at
// we don't have a new GPS fix - nothing more to do // least means we can cope with gyro drift while sitting
return; // on a bench with no GPS lock
} if (_ra_deltat < 0.1) {
// not enough time has accumulated
// get GPS velocity vector in earth frame return;
Vector3f gps_velocity = Vector3f(_gps->velocity_north(), _gps->velocity_east(), 0); }
nogps=true;
// see if this is our first time through - in which case we gps_velocity.zero();
// just setup the start times and return last_correction_time = millis();
if (_ra_sum_start == 0) { } else {
_ra_sum_start = _gps->last_fix_time; if (_gps->last_fix_time == _ra_sum_start) {
_gps_last_velocity = gps_velocity; // we don't have a new GPS fix - nothing more to do
return; return;
} }
gps_velocity = Vector3f(_gps->velocity_north(), _gps->velocity_east(), 0);
// get the corrected acceleration vector in earth frame. Units last_correction_time = _gps->last_fix_time;
// are 1g }
Vector3f ge = Vector3f(0,0, -_ra_deltat) + ((gps_velocity - _gps_last_velocity)/_gravity);
// calculate the error term in earth frame
error = _ra_sum % ge;
// extract the X and Y components for the total drift
// error. The Z component comes from the yaw source
// we constrain the error on each axis to 0.2
// the Z component of this error comes from the yaw correction
_drift_error_earth.x = constrain(error.x, -0.2, 0.2);
_drift_error_earth.y = constrain(error.y, -0.2, 0.2);
// convert the error term to body frame
error = _dcm_matrix.mul_transpose(_drift_error_earth);
// we now want to calculate _omega_P and _omega_I. The
// _omega_P value is what drags us quickly to the
// accelerometer reading.
_omega_P = error * _kp;
// the _omega_I is the long term accumulated gyro
// error. This determines how much gyro drift we can
// handle.
Vector3f omega_I_delta = error * (_ki * _ra_deltat);
// add in the limited omega correction into the long term
// drift correction accumulator
_omega_I_sum += omega_I_delta;
_omega_I_sum_time += _ra_deltat;
// if we have accumulated a gyro drift estimate for 15
// seconds, then move it to the _omega_I term which is applied
// on each update
if (_omega_I_sum_time > 15) {
// limit the slope of omega_I on each axis to
// the maximum drift rate reported by the sensor driver
float drift_limit = _gyro_drift_limit * _omega_I_sum_time;
_omega_I_sum.x = constrain(_omega_I_sum.x, -drift_limit, drift_limit);
_omega_I_sum.y = constrain(_omega_I_sum.y, -drift_limit, drift_limit);
_omega_I_sum.z = constrain(_omega_I_sum.z, -drift_limit, drift_limit);
_omega_I += _omega_I_sum;
_omega_I_sum.zero();
_omega_I_sum_time = 0;
}
// zero our accumulator ready for the next GPS step
_ra_sum.zero();
_ra_deltat = 0;
_ra_sum_start = _gps->last_fix_time;
// remember the GPS velocity for next time // see if this is our first time through - in which case we
_gps_last_velocity = gps_velocity; // just setup the start times and return
if (_ra_sum_start == 0) {
_ra_sum_start = last_correction_time;
_gps_last_velocity = gps_velocity;
return;
}
// get the corrected acceleration vector in earth frame. Units
// are 1g
Vector3f ge;
if(!nogps) {
ge = Vector3f(0, 0, -1.0) + ((gps_velocity - _gps_last_velocity)/_gravity)/_ra_deltat;
}
else {
ge = Vector3f(0, 0, -1.0);
}
// calculate the error term in earth frame
error = (_ra_sum/_ra_deltat % ge)/ge.length();
// extract the X and Y components for the total drift
// error. The Z component comes from the yaw source
// we constrain the error on each axis to 0.2
// the Z component of this error comes from the yaw correction
_drift_error_earth.x = error.x; //constrain(error.x, -0.2, 0.2);
_drift_error_earth.y = error.y;// constrain(error.y, -0.2, 0.2);
//_drift_error_earth.z = error.z;
// convert the error term to body frame
error = _dcm_matrix.mul_transpose(_drift_error_earth);
// we now want to calculate _omega_P and _omega_I. The
// _omega_P value is what drags us quickly to the
// accelerometer reading.
_omega_P = error * _kp;
_omega_I_delta = (error * _ki) / _ra_deltat;
// the _omega_I is the long term accumulated gyro
// error. This determines how much gyro drift we can
// handle.
//_omega_I_delta_sum += error * _ki * _ra_deltat;
//_omega_I_sum_time += _ra_deltat;
// if we have accumulated a gyro drift estimate for 15
// seconds, then move it to the _omega_I term which is applied
// on each update
/*if (_omega_I_sum_time > 5) {
// limit the slope of omega_I on each axis to
// the maximum drift rate reported by the sensor driver
//float drift_limit = _gyro_drift_limit * _ra_deltat * 2;
_omega_I_delta_sum /= _omega_I_sum_time;
_omega_I_delta_sum.x =_omega_I_delta_sum.x; //constrain(_omega_I_delta_sum.x, -drift_limit, drift_limit);
_omega_I_delta_sum.y =_omega_I_delta_sum.y; //constrain(_omega_I_delta_sum.y, -drift_limit, drift_limit);
_omega_I_delta_sum.z =_omega_I_delta_sum.z; //constrain(_omega_I_delta_sum.z, -drift_limit, drift_limit);
_omega_I_delta = _omega_I_delta_sum;
_omega_I_delta_sum.zero();
_omega_I_sum_time = 0;
}*/
// zero our accumulator ready for the next GPS step
_ra_sum.zero();
_ra_deltat = 0;
_ra_sum_start = last_correction_time;
// remember the GPS velocity for next time
_gps_last_velocity = gps_velocity;
// these sums support the reporting of the DCM state via MAVLink
_error_rp_sum += Vector3f(_drift_error_earth.x, _drift_error_earth.y, 0).length();
_error_rp_count++;
// these sums support the reporting of the DCM state via MAVLink
_error_rp_sum += Vector3f(_drift_error_earth.x, _drift_error_earth.y, 0).length();
_error_rp_count++;
} }

View File

@ -16,11 +16,11 @@ public:
// Constructors // Constructors
AP_AHRS_DCM(IMU *imu, GPS *&gps) : AP_AHRS(imu, gps) AP_AHRS_DCM(IMU *imu, GPS *&gps) : AP_AHRS(imu, gps)
{ {
_kp = 9;
_dcm_matrix.identity(); _dcm_matrix.identity();
// base the ki values on the sensors drift rate // base the ki values on the sensors drift rate
_ki = _gyro_drift_limit * 110; _ki = _gyro_drift_limit * 5;
_kp = .13;
} }
// return the smoothed gyro vector corrected for drift // return the smoothed gyro vector corrected for drift
@ -65,10 +65,9 @@ private:
Vector3f _omega_P; // accel Omega Proportional correction Vector3f _omega_P; // accel Omega Proportional correction
Vector3f _omega_I; // Omega Integrator correction Vector3f _omega_I; // Omega Integrator correction
Vector3f _omega_I_sum; // summation vector for omegaI
float _omega_I_sum_time;
Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction
Vector3f _omega; // Corrected Gyro_Vector data Vector3f _omega; // Corrected Gyro_Vector data
Vector3f _omega_I_delta;
// state to support status reporting // state to support status reporting
float _renorm_val_sum; float _renorm_val_sum;