mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-24 01:28:29 -04:00
AHRS: brought DCM more inline with Bill's implementation
omega_I applied continuously. _ki larger. Stop integrating when _omega.length()>20 The key change was the scaling of ge to ensure the error is not quadratic
This commit is contained in:
parent
2934b4173b
commit
d230690b7b
@ -310,7 +310,8 @@ AP_AHRS_DCM::drift_correction_compass(float deltat)
|
|||||||
|
|
||||||
// setup the z component of the total drift error in earth
|
// setup the z component of the total drift error in earth
|
||||||
// frame. This is then used by the main drift correction code
|
// frame. This is then used by the main drift correction code
|
||||||
_drift_error_earth.z = constrain(error.z, -0.4, 0.4);
|
_drift_error_earth.z = error.z*70; //constrain(error.z, -0.4, 0.4);
|
||||||
|
//TODO: figure out proper error scaling instead of using 70
|
||||||
|
|
||||||
_error_yaw_sum += fabs(_drift_error_earth.z);
|
_error_yaw_sum += fabs(_drift_error_earth.z);
|
||||||
_error_yaw_count++;
|
_error_yaw_count++;
|
||||||
@ -330,106 +331,123 @@ AP_AHRS_DCM::drift_correction_compass(float deltat)
|
|||||||
void
|
void
|
||||||
AP_AHRS_DCM::drift_correction(float deltat)
|
AP_AHRS_DCM::drift_correction(float deltat)
|
||||||
{
|
{
|
||||||
Vector3f error;
|
Vector3f error;
|
||||||
|
Vector3f gps_velocity;
|
||||||
|
bool nogps=false;
|
||||||
|
uint32_t last_correction_time;
|
||||||
|
|
||||||
// if we don't have a working GPS then use the old style
|
if(_omega.length() < ToRad(20))
|
||||||
// of drift correction
|
_omega_I += _omega_I_delta * deltat;
|
||||||
if (_gps == NULL || _gps->status() != GPS::GPS_OK) {
|
|
||||||
//drift_correction_old(deltat);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// perform yaw drift correction if we have a new yaw reference
|
// perform yaw drift correction if we have a new yaw reference
|
||||||
// vector
|
// vector
|
||||||
drift_correction_compass(deltat);
|
drift_correction_compass(deltat);
|
||||||
|
|
||||||
// scale the accel vector so it is in 1g units. This brings it
|
// scale the accel vector so it is in 1g units. This brings it
|
||||||
// into line with the mag vector, allowing the two to be combined
|
// into line with the mag vector, allowing the two to be combined
|
||||||
_accel_vector *= (deltat / _gravity);
|
_accel_vector *= (deltat / _gravity);
|
||||||
|
|
||||||
// integrate the accel vector in the earth frame between GPS readings
|
// integrate the accel vector in the earth frame between GPS readings
|
||||||
_ra_sum += _dcm_matrix * _accel_vector;
|
_ra_sum += _dcm_matrix * _accel_vector;
|
||||||
|
|
||||||
// keep a sum of the deltat values, so we know how much time
|
// keep a sum of the deltat values, so we know how much time
|
||||||
// we have integrated over
|
// we have integrated over
|
||||||
_ra_deltat += deltat;
|
_ra_deltat += deltat;
|
||||||
|
|
||||||
// see if we have a new GPS reading
|
if (_gps == NULL || _gps->status() != GPS::GPS_OK) {
|
||||||
if (_gps->last_fix_time == _ra_sum_start) {
|
// no GPS, or no lock. We assume zero velocity. This at
|
||||||
// we don't have a new GPS fix - nothing more to do
|
// least means we can cope with gyro drift while sitting
|
||||||
return;
|
// on a bench with no GPS lock
|
||||||
}
|
if (_ra_deltat < 0.1) {
|
||||||
|
// not enough time has accumulated
|
||||||
// get GPS velocity vector in earth frame
|
return;
|
||||||
Vector3f gps_velocity = Vector3f(_gps->velocity_north(), _gps->velocity_east(), 0);
|
}
|
||||||
|
nogps=true;
|
||||||
// see if this is our first time through - in which case we
|
gps_velocity.zero();
|
||||||
// just setup the start times and return
|
last_correction_time = millis();
|
||||||
if (_ra_sum_start == 0) {
|
} else {
|
||||||
_ra_sum_start = _gps->last_fix_time;
|
if (_gps->last_fix_time == _ra_sum_start) {
|
||||||
_gps_last_velocity = gps_velocity;
|
// we don't have a new GPS fix - nothing more to do
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
gps_velocity = Vector3f(_gps->velocity_north(), _gps->velocity_east(), 0);
|
||||||
// get the corrected acceleration vector in earth frame. Units
|
last_correction_time = _gps->last_fix_time;
|
||||||
// are 1g
|
}
|
||||||
Vector3f ge = Vector3f(0,0, -_ra_deltat) + ((gps_velocity - _gps_last_velocity)/_gravity);
|
|
||||||
|
|
||||||
// calculate the error term in earth frame
|
|
||||||
error = _ra_sum % ge;
|
|
||||||
|
|
||||||
// extract the X and Y components for the total drift
|
|
||||||
// error. The Z component comes from the yaw source
|
|
||||||
// we constrain the error on each axis to 0.2
|
|
||||||
// the Z component of this error comes from the yaw correction
|
|
||||||
_drift_error_earth.x = constrain(error.x, -0.2, 0.2);
|
|
||||||
_drift_error_earth.y = constrain(error.y, -0.2, 0.2);
|
|
||||||
|
|
||||||
// convert the error term to body frame
|
|
||||||
error = _dcm_matrix.mul_transpose(_drift_error_earth);
|
|
||||||
|
|
||||||
// we now want to calculate _omega_P and _omega_I. The
|
|
||||||
// _omega_P value is what drags us quickly to the
|
|
||||||
// accelerometer reading.
|
|
||||||
_omega_P = error * _kp;
|
|
||||||
|
|
||||||
// the _omega_I is the long term accumulated gyro
|
|
||||||
// error. This determines how much gyro drift we can
|
|
||||||
// handle.
|
|
||||||
Vector3f omega_I_delta = error * (_ki * _ra_deltat);
|
|
||||||
|
|
||||||
// add in the limited omega correction into the long term
|
|
||||||
// drift correction accumulator
|
|
||||||
_omega_I_sum += omega_I_delta;
|
|
||||||
_omega_I_sum_time += _ra_deltat;
|
|
||||||
|
|
||||||
// if we have accumulated a gyro drift estimate for 15
|
|
||||||
// seconds, then move it to the _omega_I term which is applied
|
|
||||||
// on each update
|
|
||||||
if (_omega_I_sum_time > 15) {
|
|
||||||
// limit the slope of omega_I on each axis to
|
|
||||||
// the maximum drift rate reported by the sensor driver
|
|
||||||
float drift_limit = _gyro_drift_limit * _omega_I_sum_time;
|
|
||||||
_omega_I_sum.x = constrain(_omega_I_sum.x, -drift_limit, drift_limit);
|
|
||||||
_omega_I_sum.y = constrain(_omega_I_sum.y, -drift_limit, drift_limit);
|
|
||||||
_omega_I_sum.z = constrain(_omega_I_sum.z, -drift_limit, drift_limit);
|
|
||||||
_omega_I += _omega_I_sum;
|
|
||||||
_omega_I_sum.zero();
|
|
||||||
_omega_I_sum_time = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// zero our accumulator ready for the next GPS step
|
|
||||||
_ra_sum.zero();
|
|
||||||
_ra_deltat = 0;
|
|
||||||
_ra_sum_start = _gps->last_fix_time;
|
|
||||||
|
|
||||||
// remember the GPS velocity for next time
|
// see if this is our first time through - in which case we
|
||||||
_gps_last_velocity = gps_velocity;
|
// just setup the start times and return
|
||||||
|
if (_ra_sum_start == 0) {
|
||||||
|
_ra_sum_start = last_correction_time;
|
||||||
|
_gps_last_velocity = gps_velocity;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
// get the corrected acceleration vector in earth frame. Units
|
||||||
|
// are 1g
|
||||||
|
Vector3f ge;
|
||||||
|
if(!nogps) {
|
||||||
|
ge = Vector3f(0, 0, -1.0) + ((gps_velocity - _gps_last_velocity)/_gravity)/_ra_deltat;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
ge = Vector3f(0, 0, -1.0);
|
||||||
|
}
|
||||||
|
// calculate the error term in earth frame
|
||||||
|
|
||||||
|
error = (_ra_sum/_ra_deltat % ge)/ge.length();
|
||||||
|
|
||||||
|
// extract the X and Y components for the total drift
|
||||||
|
// error. The Z component comes from the yaw source
|
||||||
|
// we constrain the error on each axis to 0.2
|
||||||
|
// the Z component of this error comes from the yaw correction
|
||||||
|
_drift_error_earth.x = error.x; //constrain(error.x, -0.2, 0.2);
|
||||||
|
_drift_error_earth.y = error.y;// constrain(error.y, -0.2, 0.2);
|
||||||
|
//_drift_error_earth.z = error.z;
|
||||||
|
// convert the error term to body frame
|
||||||
|
error = _dcm_matrix.mul_transpose(_drift_error_earth);
|
||||||
|
|
||||||
|
// we now want to calculate _omega_P and _omega_I. The
|
||||||
|
// _omega_P value is what drags us quickly to the
|
||||||
|
// accelerometer reading.
|
||||||
|
_omega_P = error * _kp;
|
||||||
|
|
||||||
|
_omega_I_delta = (error * _ki) / _ra_deltat;
|
||||||
|
|
||||||
|
// the _omega_I is the long term accumulated gyro
|
||||||
|
// error. This determines how much gyro drift we can
|
||||||
|
// handle.
|
||||||
|
//_omega_I_delta_sum += error * _ki * _ra_deltat;
|
||||||
|
//_omega_I_sum_time += _ra_deltat;
|
||||||
|
|
||||||
|
// if we have accumulated a gyro drift estimate for 15
|
||||||
|
// seconds, then move it to the _omega_I term which is applied
|
||||||
|
// on each update
|
||||||
|
/*if (_omega_I_sum_time > 5) {
|
||||||
|
// limit the slope of omega_I on each axis to
|
||||||
|
// the maximum drift rate reported by the sensor driver
|
||||||
|
//float drift_limit = _gyro_drift_limit * _ra_deltat * 2;
|
||||||
|
_omega_I_delta_sum /= _omega_I_sum_time;
|
||||||
|
_omega_I_delta_sum.x =_omega_I_delta_sum.x; //constrain(_omega_I_delta_sum.x, -drift_limit, drift_limit);
|
||||||
|
_omega_I_delta_sum.y =_omega_I_delta_sum.y; //constrain(_omega_I_delta_sum.y, -drift_limit, drift_limit);
|
||||||
|
_omega_I_delta_sum.z =_omega_I_delta_sum.z; //constrain(_omega_I_delta_sum.z, -drift_limit, drift_limit);
|
||||||
|
_omega_I_delta = _omega_I_delta_sum;
|
||||||
|
_omega_I_delta_sum.zero();
|
||||||
|
_omega_I_sum_time = 0;
|
||||||
|
}*/
|
||||||
|
|
||||||
|
|
||||||
|
// zero our accumulator ready for the next GPS step
|
||||||
|
_ra_sum.zero();
|
||||||
|
_ra_deltat = 0;
|
||||||
|
_ra_sum_start = last_correction_time;
|
||||||
|
|
||||||
|
// remember the GPS velocity for next time
|
||||||
|
_gps_last_velocity = gps_velocity;
|
||||||
|
|
||||||
|
// these sums support the reporting of the DCM state via MAVLink
|
||||||
|
_error_rp_sum += Vector3f(_drift_error_earth.x, _drift_error_earth.y, 0).length();
|
||||||
|
_error_rp_count++;
|
||||||
|
|
||||||
// these sums support the reporting of the DCM state via MAVLink
|
|
||||||
_error_rp_sum += Vector3f(_drift_error_earth.x, _drift_error_earth.y, 0).length();
|
|
||||||
_error_rp_count++;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -16,11 +16,11 @@ public:
|
|||||||
// Constructors
|
// Constructors
|
||||||
AP_AHRS_DCM(IMU *imu, GPS *&gps) : AP_AHRS(imu, gps)
|
AP_AHRS_DCM(IMU *imu, GPS *&gps) : AP_AHRS(imu, gps)
|
||||||
{
|
{
|
||||||
_kp = 9;
|
|
||||||
_dcm_matrix.identity();
|
_dcm_matrix.identity();
|
||||||
|
|
||||||
// base the ki values on the sensors drift rate
|
// base the ki values on the sensors drift rate
|
||||||
_ki = _gyro_drift_limit * 110;
|
_ki = _gyro_drift_limit * 5;
|
||||||
|
_kp = .13;
|
||||||
}
|
}
|
||||||
|
|
||||||
// return the smoothed gyro vector corrected for drift
|
// return the smoothed gyro vector corrected for drift
|
||||||
@ -65,10 +65,9 @@ private:
|
|||||||
|
|
||||||
Vector3f _omega_P; // accel Omega Proportional correction
|
Vector3f _omega_P; // accel Omega Proportional correction
|
||||||
Vector3f _omega_I; // Omega Integrator correction
|
Vector3f _omega_I; // Omega Integrator correction
|
||||||
Vector3f _omega_I_sum; // summation vector for omegaI
|
|
||||||
float _omega_I_sum_time;
|
|
||||||
Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction
|
Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction
|
||||||
Vector3f _omega; // Corrected Gyro_Vector data
|
Vector3f _omega; // Corrected Gyro_Vector data
|
||||||
|
Vector3f _omega_I_delta;
|
||||||
|
|
||||||
// state to support status reporting
|
// state to support status reporting
|
||||||
float _renorm_val_sum;
|
float _renorm_val_sum;
|
||||||
|
Loading…
Reference in New Issue
Block a user