5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-05 15:38:29 -04:00

Tools: add IMU filter test tool

This commit is contained in:
Guglielmo 2019-06-17 16:42:01 +02:00 committed by Peter Barker
parent 767968026a
commit 8f88639d38
4 changed files with 970 additions and 0 deletions

View File

@ -0,0 +1,201 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" ArduPilot BiquadFilter
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
"""
__author__ = "Guglielmo Cassinelli"
__contact__ = "gdguglie@gmail.com"
import numpy as np
class DigitalLPF:
def __init__(self, cutoff_freq, sample_freq):
self._cutoff_freq = cutoff_freq
self._sample_freq = sample_freq
self._output = 0
self.compute_alpha()
def compute_alpha(self):
if self._cutoff_freq <= 0 or self._sample_freq <= 0:
self.alpha = 1.
else:
dt = 1. / self._sample_freq
rc = 1. / (np.pi * 2 * self._cutoff_freq)
a = dt / (dt + rc)
self.alpha = np.clip(a, 0, 1)
def apply(self, sample):
self._output += (sample - self._output) * self.alpha
return self._output
class BiquadFilterType:
LPF = 0
PEAK = 1
NOTCH = 2
class BiquadFilter:
def __init__(self, center_freq, sample_freq, type=BiquadFilterType.LPF, attenuation=10, bandwidth=15):
self._center_freq = int(center_freq)
self._attenuation_db = int(attenuation) # used only by notch, use setter
self._bandwidth_hz = int(bandwidth) # used only by notch, use setter
self._sample_freq = sample_freq
self._type = type
self._delayed_sample1 = 0
self._delayed_sample2 = 0
self._delayed_output1 = 0
self._delayed_output2 = 0
self.b0 = 0.
self.b1 = 0.
self.b2 = 0.
self.a0 = 1
self.a1 = 0.
self.a2 = 0.
self.compute_params()
def get_sample_freq(self):
return self._sample_freq
def reset(self):
self._delayed_sample1 = 0
self._delayed_sample2 = 0
self._delayed_output1 = 0
self._delayed_output2 = 0
def get_type(self):
return self._type
def set_attenuation(self, attenuation_db):
self._attenuation_db = int(attenuation_db)
self.compute_params()
def set_bandwidth(self, bandwidth_hz):
self._bandwidth_hz = int(bandwidth_hz)
self.compute_params()
def set_center_freq(self, cutoff_freq):
self._center_freq = int(cutoff_freq)
self.compute_params()
def compute_params(self):
omega = 2 * np.pi * self._center_freq / self._sample_freq
sin_om = np.sin(omega)
cos_om = np.cos(omega)
if self._type == BiquadFilterType.LPF:
if self._center_freq > 0:
Q = 1 / np.sqrt(2)
alpha = sin_om / (2 * Q)
self.b0 = (1 - cos_om) / 2
self.b1 = 1 - cos_om
self.b2 = self.b0
self.a0 = 1 + alpha
self.a1 = -2 * cos_om
self.a2 = 1 - alpha
elif self._type == BiquadFilterType.PEAK:
A = 10 ** (-self._attenuation_db / 40)
# why not the formula below? It prevents a division by 0 when bandwidth = 2*frequency
octaves = np.log2(self._center_freq / (self._center_freq - self._bandwidth_hz / 2)) * 2
Q = np.sqrt(2 ** octaves) / (2 ** octaves - 1)
# Q = self._center_freq / self._bandwidth_hz
alpha = sin_om / (2 * Q / A)
self.b0 = 1.0 + alpha * A
self.b1 = -2.0 * cos_om
self.b2 = 1.0 - alpha * A
self.a0 = 1.0 + alpha / A
self.a1 = -2.0 * cos_om
self.a2 = 1.0 - alpha / A
elif self._type == BiquadFilterType.NOTCH:
alpha = sin_om * np.sinh(np.log(2) / 2 * self._bandwidth_hz * omega * sin_om)
self.b0 = 1
self.b1 = -2 * cos_om
self.b2 = self.b0
self.a0 = 1 + alpha
self.a1 = -2 * cos_om
self.a2 = 1 - alpha
self.b0 /= self.a0
self.b1 /= self.a0
self.b2 /= self.a0
self.a1 /= self.a0
self.a2 /= self.a0
def apply(self, sample):
if self._center_freq <= 0:
return sample
output = (self.b0 * sample + self.b1 * self._delayed_sample1 + self.b2 * self._delayed_sample2 - self.a1
* self._delayed_output1 - self.a2 * self._delayed_output2)
self._delayed_sample2 = self._delayed_sample1
self._delayed_sample1 = sample
self._delayed_output2 = self._delayed_output1
self._delayed_output1 = output
return output
def get_params(self):
return {
"a1": self.a1,
"a2": self.a2,
"b0": self.b0,
"b1": self.b1,
"b2": self.b2,
}
def get_center_freq(self):
return self._center_freq
def get_attenuation(self):
return self._attenuation_db
def get_bandwidth(self):
return self._bandwidth_hz
def freq_response(self, f):
if self._center_freq <= 0:
return 1
phi = (np.sin(np.pi * f * 2 / (2 * self._sample_freq))) ** 2
r = (((self.b0 + self.b1 + self.b2) ** 2 - 4 * (self.b0 * self.b1 + 4 * self.b0 * self.b2 + self.b1 * self.b2)
* phi + 16 * self.b0 * self.b2 * phi * phi)
/ ((1 + self.a1 + self.a2) ** 2 - 4 * (self.a1 + 4 * self.a2 + self.a1 * self.a2) * phi + 16
* self.a2 * phi * phi))
# if r < 0:
# r = 0
return r ** .5

View File

@ -0,0 +1,468 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" ArduPilot IMU Filter Test Class
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
"""
__author__ = "Guglielmo Cassinelli"
__contact__ = "gdguglie@gmail.com"
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
from matplotlib.animation import FuncAnimation
from scipy import signal
from BiquadFilter import BiquadFilterType, BiquadFilter
sliders = [] # matplotlib sliders must be global
anim = None # matplotlib animations must be global
class FilterTest:
FILTER_DEBOUNCE = 10 # ms
FILT_SHAPE_DT_FACTOR = 1 # increase to reduce filter shape size
FFT_N = 512
filters = {}
def __init__(self, acc_t, acc_x, acc_y, acc_z, gyr_t, gyr_x, gyr_y, gyr_z, acc_freq, gyr_freq,
acc_lpf_cutoff, gyr_lpf_cutoff,
acc_notch_freq, acc_notch_att, acc_notch_band,
gyr_notch_freq, gyr_notch_att, gyr_notch_band,
log_name, accel_notch=False, second_notch=False):
self.filter_color_map = plt.get_cmap('summer')
self.filters["acc"] = [
BiquadFilter(acc_lpf_cutoff, acc_freq)
]
if accel_notch:
self.filters["acc"].append(
BiquadFilter(acc_notch_freq, acc_freq, BiquadFilterType.PEAK, acc_notch_att, acc_notch_band),
)
self.filters["gyr"] = [
BiquadFilter(gyr_lpf_cutoff, gyr_freq),
BiquadFilter(gyr_notch_freq, gyr_freq, BiquadFilterType.PEAK, gyr_notch_att, gyr_notch_band)
]
if second_notch:
self.filters["acc"].append(
BiquadFilter(acc_notch_freq * 2, acc_freq, BiquadFilterType.PEAK, acc_notch_att, acc_notch_band)
)
self.filters["gyr"].append(
BiquadFilter(gyr_notch_freq * 2, gyr_freq, BiquadFilterType.PEAK, gyr_notch_att, gyr_notch_band)
)
self.ACC_t = acc_t
self.ACC_x = acc_x
self.ACC_y = acc_y
self.ACC_z = acc_z
self.GYR_t = gyr_t
self.GYR_x = gyr_x
self.GYR_y = gyr_y
self.GYR_z = gyr_z
self.GYR_freq = gyr_freq
self.ACC_freq = acc_freq
self.gyr_dt = 1. / gyr_freq
self.acc_dt = 1. / acc_freq
self.timer = None
self.updated_artists = []
# INIT
self.init_plot(log_name)
def test_acc_filters(self):
filt_xs = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_x)
filt_ys = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_y)
filt_zs = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_z)
return filt_xs, filt_ys, filt_zs
def test_gyr_filters(self):
filt_xs = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_x)
filt_ys = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_y)
filt_zs = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_z)
return filt_xs, filt_ys, filt_zs
def test_filters(self, filters, Ts, Xs):
for f in filters:
f.reset()
x_filtered = []
for i, t in enumerate(Ts):
x = Xs[i]
x_f = x
for filt in filters:
x_f = filt.apply(x_f)
x_filtered.append(x_f)
return x_filtered
def get_filter_shape(self, filter):
samples = int(filter.get_sample_freq()) # resolution of filter shape based on sample rate
x_space = np.linspace(0.0, samples // 2, samples // int(2 * self.FILT_SHAPE_DT_FACTOR))
return x_space, filter.freq_response(x_space)
def init_signal_plot(self, ax, Ts, Xs, Ys, Zs, Xs_filtered, Ys_filtered, Zs_filtered, label):
ax.plot(Ts, Xs, linewidth=1, label="{}X".format(label), alpha=0.5)
ax.plot(Ts, Ys, linewidth=1, label="{}Y".format(label), alpha=0.5)
ax.plot(Ts, Zs, linewidth=1, label="{}Z".format(label), alpha=0.5)
filtered_x_ax, = ax.plot(Ts, Xs_filtered, linewidth=1, label="{}X filtered".format(label), alpha=1)
filtered_y_ax, = ax.plot(Ts, Ys_filtered, linewidth=1, label="{}Y filtered".format(label), alpha=1)
filtered_z_ax, = ax.plot(Ts, Zs_filtered, linewidth=1, label="{}Z filtered".format(label), alpha=1)
ax.legend(prop={'size': 8})
return filtered_x_ax, filtered_y_ax, filtered_z_ax
def fft_to_xdata(self, fft):
n = len(fft)
norm_factor = 2. / n
return norm_factor * np.abs(fft[:n // 2])
def plot_fft(self, ax, x, fft, label):
fft_ax, = ax.plot(x, self.fft_to_xdata(fft), label=label)
return fft_ax
def init_fft(self, ax, Ts, Xs, Ys, Zs, sample_rate, dt, Xs_filtered, Ys_filtered, Zs_filtered, label):
_freqs_raw_x, _times_raw_x, _stft_raw_x = signal.stft(Xs, sample_rate, window='hann', nperseg=self.FFT_N)
raw_fft_x = np.average(np.abs(_stft_raw_x), axis=1)
_freqs_raw_y, _times_raw_y, _stft_raw_y = signal.stft(Ys, sample_rate, window='hann', nperseg=self.FFT_N)
raw_fft_y = np.average(np.abs(_stft_raw_y), axis=1)
_freqs_raw_z, _times_raw_z, _stft_raw_z = signal.stft(Zs, sample_rate, window='hann', nperseg=self.FFT_N)
raw_fft_z = np.average(np.abs(_stft_raw_z), axis=1)
_freqs_x, _times_x, _stft_x = signal.stft(Xs_filtered, sample_rate, window='hann', nperseg=self.FFT_N)
filtered_fft_x = np.average(np.abs(_stft_x), axis=1)
_freqs_y, _times_y, _stft_y = signal.stft(Ys_filtered, sample_rate, window='hann', nperseg=self.FFT_N)
filtered_fft_y = np.average(np.abs(_stft_y), axis=1)
_freqs_z, _times_z, _stft_z = signal.stft(Zs_filtered, sample_rate, window='hann', nperseg=self.FFT_N)
filtered_fft_z = np.average(np.abs(_stft_z), axis=1)
ax.plot(_freqs_raw_x, raw_fft_x, alpha=0.5, linewidth=1, label="{}x FFT".format(label))
ax.plot(_freqs_raw_y, raw_fft_y, alpha=0.5, linewidth=1, label="{}y FFT".format(label))
ax.plot(_freqs_raw_z, raw_fft_z, alpha=0.5, linewidth=1, label="{}z FFT".format(label))
filtered_fft_ax_x, = ax.plot(_freqs_x, filtered_fft_x, label="filt. {}x FFT".format(label))
filtered_fft_ax_y, = ax.plot(_freqs_y, filtered_fft_y, label="filt. {}y FFT".format(label))
filtered_fft_ax_z, = ax.plot(_freqs_z, filtered_fft_z, label="filt. {}z FFT".format(label))
# FFT
# samples = len(Ts)
# x_space = np.linspace(0.0, 1.0 / (2.0 * dt), samples // 2)
# filtered_data = np.hanning(len(Xs_filtered)) * Xs_filtered
# raw_fft = np.fft.fft(np.hanning(len(Xs)) * Xs)
# filtered_fft = np.fft.fft(filtered_data, n=self.FFT_N)
# self.plot_fft(ax, x_space, raw_fft, "{} FFT".format(label))
# fft_freq = np.fft.fftfreq(self.FFT_N, d=dt)
# x_space
# filtered_fft_ax = self.plot_fft(ax, fft_freq[:self.FFT_N // 2], filtered_fft, "filtered {} FFT".format(label))
ax.set_xlabel("frequency")
# ax.set_xscale("log")
# ax.xaxis.set_major_formatter(ScalarFormatter())
ax.legend(prop={'size': 8})
return filtered_fft_ax_x, filtered_fft_ax_y, filtered_fft_ax_z
def init_filter_shape(self, ax, filter, color):
center = filter.get_center_freq()
x_space, lpf_shape = self.get_filter_shape(filter)
plot_slpf_shape, = ax.plot(x_space, lpf_shape, c=color, label="LPF shape")
xvline_lpf_cutoff = ax.axvline(x=center, linestyle="--", c=color) # LPF cutoff freq
return plot_slpf_shape, xvline_lpf_cutoff
def create_slider(self, name, rect, max, value, color, callback):
global sliders
ax_slider = self.fig.add_axes(rect, facecolor='lightgoldenrodyellow')
slider = Slider(ax_slider, name, 0, max, valinit=np.sqrt(max * value), valstep=1, color=color)
slider.valtext.set_text(value)
# slider.drawon = False
def changed(val, cbk, max, slider):
# non linear slider to better control small values
val = int(val ** 2 / max)
slider.valtext.set_text(val)
cbk(val)
slider.on_changed(lambda val, cbk=callback, max=max, s=slider: changed(val, cbk, max, s))
sliders.append(slider)
def delay_update(self, update_cbk):
def _delayed_update(self, cbk):
self.timer.stop()
cbk()
# delay actual filtering
if self.fig:
if self.timer:
self.timer.stop()
self.timer = self.fig.canvas.new_timer(interval=self.FILTER_DEBOUNCE)
self.timer.add_callback(lambda self=self: _delayed_update(self, update_cbk))
self.timer.start()
def update_filter_shape(self, filter, shape, center_line):
x_data, new_shape = self.get_filter_shape(filter)
shape.set_ydata(new_shape)
center_line.set_xdata(filter.get_center_freq())
self.updated_artists.extend([
shape,
center_line,
])
def update_signal_and_fft_plot(self, filters_key, time_list, sample_lists, signal_shapes, fft_shapes, shape,
center_line, sample_rate):
# print("update_signal_and_fft_plot", self.filters[filters_key][0].get_center_freq())
Xs, Ys, Zs = sample_lists
signal_shape_x, signal_shape_y, signal_shape_z = signal_shapes
fft_shape_x, fft_shape_y, fft_shape_z = fft_shapes
Xs_filtered = self.test_filters(self.filters[filters_key], time_list, Xs)
Ys_filtered = self.test_filters(self.filters[filters_key], time_list, Ys)
Zs_filtered = self.test_filters(self.filters[filters_key], time_list, Zs)
signal_shape_x.set_ydata(Xs_filtered)
signal_shape_y.set_ydata(Ys_filtered)
signal_shape_z.set_ydata(Zs_filtered)
self.updated_artists.extend([signal_shape_x, signal_shape_y, signal_shape_z])
_freqs_x, _times_x, _stft_x = signal.stft(Xs_filtered, sample_rate, window='hann', nperseg=self.FFT_N)
filtered_fft_x = np.average(np.abs(_stft_x), axis=1)
_freqs_y, _times_y, _stft_y = signal.stft(Ys_filtered, sample_rate, window='hann', nperseg=self.FFT_N)
filtered_fft_y = np.average(np.abs(_stft_y), axis=1)
_freqs_z, _times_z, _stft_z = signal.stft(Zs_filtered, sample_rate, window='hann', nperseg=self.FFT_N)
filtered_fft_z = np.average(np.abs(_stft_z), axis=1)
fft_shape_x.set_ydata(filtered_fft_x)
fft_shape_y.set_ydata(filtered_fft_y)
fft_shape_z.set_ydata(filtered_fft_z)
self.updated_artists.extend([
fft_shape_x, fft_shape_y, fft_shape_z,
shape, center_line,
])
# self.fig.canvas.draw()
def animation_update(self):
updated_artists = self.updated_artists.copy()
# if updated_artists:
# print("animation update")
# reset updated artists
self.updated_artists = []
return updated_artists
def update_filter(self, val, cbk, filter, shape, center_line, filters_key, time_list, sample_lists, signal_shapes,
fft_shapes):
# this callback sets the parameter controlled by the slider
cbk(val)
# print("filter update",val)
# update filter shape and delay fft update
self.update_filter_shape(filter, shape, center_line)
sample_freq = filter.get_sample_freq()
self.delay_update(
lambda self=self: self.update_signal_and_fft_plot(filters_key, time_list, sample_lists, signal_shapes,
fft_shapes, shape, center_line, sample_freq))
def create_filter_control(self, name, filter, rect, max, default, shape, center_line, cbk, filters_key, time_list,
sample_lists, signal_shapes, fft_shapes, filt_color):
self.create_slider(name, rect, max, default, filt_color, lambda val, cbk=cbk, self=self, filter=filter, shape=shape,
center_line=center_line, filters_key=filters_key,
time_list=time_list, sample_list=sample_lists,
signal_shape=signal_shapes, fft_shape=fft_shapes:
self.update_filter(val, cbk, filter, shape, center_line, filters_key,
time_list, sample_list, signal_shape, fft_shape))
def create_controls(self, filters_key, base_rect, padding, ax_fft, time_list, sample_lists, signal_shapes,
fft_shapes):
ax_filter = ax_fft.twinx()
ax_filter.set_navigate(False)
ax_filter.set_yticks([])
num_filters = len(self.filters[filters_key])
for i, filter in enumerate(self.filters[filters_key]):
filt_type = filter.get_type()
filt_color = self.filter_color_map(i / num_filters)
filt_shape, filt_cutoff = self.init_filter_shape(ax_filter, filter, filt_color)
if filt_type == BiquadFilterType.PEAK:
name = "Notch"
else:
name = "LPF"
# control for center freq is common to all filters
self.create_filter_control("{} freq".format(name), filter, base_rect, 500, filter.get_center_freq(),
filt_shape, filt_cutoff,
lambda val, filter=filter: filter.set_center_freq(val),
filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color)
# move down of control height + padding
base_rect[1] -= (base_rect[3] + padding)
if filt_type == BiquadFilterType.PEAK:
self.create_filter_control("{} att (db)".format(name), filter, base_rect, 100, filter.get_attenuation(),
filt_shape, filt_cutoff,
lambda val, filter=filter: filter.set_attenuation(val),
filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color)
base_rect[1] -= (base_rect[3] + padding)
self.create_filter_control("{} band".format(name), filter, base_rect, 300, filter.get_bandwidth(),
filt_shape, filt_cutoff,
lambda val, filter=filter: filter.set_bandwidth(val),
filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color)
base_rect[1] -= (base_rect[3] + padding)
def create_spectrogram(self, data, name, sample_rate):
freqs, times, Sx = signal.spectrogram(np.array(data), fs=sample_rate, window='hanning',
nperseg=self.FFT_N, noverlap=self.FFT_N - self.FFT_N // 10,
detrend=False, scaling='spectrum')
f, ax = plt.subplots(figsize=(4.8, 2.4))
ax.pcolormesh(times, freqs, 10 * np.log10(Sx), cmap='viridis')
ax.set_title(name)
ax.set_ylabel('Frequency (Hz)')
ax.set_xlabel('Time (s)')
def init_plot(self, log_name):
self.fig = plt.figure(figsize=(14, 9))
self.fig.canvas.set_window_title("ArduPilot Filter Test Tool - {}".format(log_name))
self.fig.canvas.draw()
rows = 2
cols = 3
raw_acc_index = 1
fft_acc_index = raw_acc_index + 1
raw_gyr_index = cols + 1
fft_gyr_index = raw_gyr_index + 1
# signal
self.ax_acc = self.fig.add_subplot(rows, cols, raw_acc_index)
self.ax_gyr = self.fig.add_subplot(rows, cols, raw_gyr_index, sharex=self.ax_acc)
accx_filtered, accy_filtered, accz_filtered = self.test_acc_filters()
self.ax_filtered_accx, self.ax_filtered_accy, self.ax_filtered_accz = self.init_signal_plot(self.ax_acc,
self.ACC_t,
self.ACC_x,
self.ACC_y,
self.ACC_z,
accx_filtered,
accy_filtered,
accz_filtered,
"AccX")
gyrx_filtered, gyry_filtered, gyrz_filtered = self.test_gyr_filters()
self.ax_filtered_gyrx, self.ax_filtered_gyry, self.ax_filtered_gyrz = self.init_signal_plot(self.ax_gyr,
self.GYR_t,
self.GYR_x,
self.GYR_y,
self.GYR_z,
gyrx_filtered,
gyry_filtered,
gyrz_filtered,
"GyrX")
# FFT
self.ax_acc_fft = self.fig.add_subplot(rows, cols, fft_acc_index)
self.ax_gyr_fft = self.fig.add_subplot(rows, cols, fft_gyr_index)
self.acc_filtered_fft_ax_x, self.acc_filtered_fft_ax_y, self.acc_filtered_fft_ax_z = self.init_fft(
self.ax_acc_fft, self.ACC_t, self.ACC_x, self.ACC_y, self.ACC_z, self.ACC_freq, self.acc_dt, accx_filtered,
accy_filtered, accz_filtered, "AccX")
self.gyr_filtered_fft_ax_x, self.gyr_filtered_fft_ax_y, self.gyr_filtered_fft_ax_z = self.init_fft(
self.ax_gyr_fft, self.GYR_t, self.GYR_x, self.GYR_y, self.GYR_z, self.GYR_freq, self.gyr_dt, gyrx_filtered,
gyry_filtered, gyrz_filtered, "GyrX")
self.fig.tight_layout()
# TODO add y z
self.create_controls("acc", [0.75, 0.95, 0.2, 0.02], 0.01, self.ax_acc_fft, self.ACC_t,
(self.ACC_x, self.ACC_y, self.ACC_z),
(self.ax_filtered_accx, self.ax_filtered_accy, self.ax_filtered_accz),
(self.acc_filtered_fft_ax_x, self.acc_filtered_fft_ax_y, self.acc_filtered_fft_ax_z))
self.create_controls("gyr", [0.75, 0.45, 0.2, 0.02], 0.01, self.ax_gyr_fft, self.GYR_t,
(self.GYR_x, self.GYR_y, self.GYR_z),
(self.ax_filtered_gyrx, self.ax_filtered_gyry, self.ax_filtered_gyrz),
(self.gyr_filtered_fft_ax_x, self.gyr_filtered_fft_ax_y, self.gyr_filtered_fft_ax_z))
# setup animation for continuous update
global anim
anim = FuncAnimation(self.fig, lambda frame, self=self: self.animation_update(), interval=1, blit=False)
# Work in progress here...
# self.create_spectrogram(self.GYR_x, "GyrX", self.GYR_freq)
# self.create_spectrogram(gyrx_filtered, "GyrX filtered", self.GYR_freq)
# self.create_spectrogram(self.ACC_x, "AccX", self.ACC_freq)
# self.create_spectrogram(accx_filtered, "AccX filtered", self.ACC_freq)
plt.show()
self.print_filter_param_info()
def print_filter_param_info(self):
if len(self.filters["acc"]) > 2 or len(self.filters["gyr"]) > 2:
print("Testing too many filters unsupported from firmware, cannot calculate parameters to set them")
return
print("To have the last filter settings in the graphs set the following parameters:\n")
for f in self.filters["acc"]:
filt_type = f.get_type()
if filt_type == BiquadFilterType.PEAK: # NOTCH
print("INS_NOTCA_ENABLE,", 1)
print("INS_NOTCA_FREQ,", f.get_center_freq())
print("INS_NOTCA_BW,", f.get_bandwidth())
print("INS_NOTCA_ATT,", f.get_attenuation())
else: # LPF
print("INS_ACCEL_FILTER,", f.get_center_freq())
for f in self.filters["gyr"]:
filt_type = f.get_type()
if filt_type == BiquadFilterType.PEAK: # NOTCH
print("INS_NOTCH_ENABLE,", 1)
print("INS_NOTCH_FREQ,", f.get_center_freq())
print("INS_NOTCH_BW,", f.get_bandwidth())
print("INS_NOTCH_ATT,", f.get_attenuation())
else: # LPF
print("INS_GYRO_FILTER,", f.get_center_freq())
print("\n+---------+")
print("| WARNING |")
print("+---------+")
print("Always check the onboard FFT to setup filters, this tool only simulate effects of filtering.")

View File

@ -0,0 +1,32 @@
# ArduPilot IMU Filter Test Tool
**Warning: always check the onboard FFT to setup filters, this tool only simulate effects of filtering.**
This is a tool to simulate IMU filtering on a raw IMU log.
To run it:
```bash
python run_filter_test.py
```
This will open a file chooser dialog to select a log file.
Log file can also be specified from command line
```bash
python run_filter_test.py logfile.bin
```
To choose a smaller section of the log begin and/or end time can be specified in seconds.
E.g. to open only the log section between 60 and 120 seconds:
```bash
python run_filter_test.py logfile.bin -b 60 -e 120
```
More info here:
https://discuss.ardupilot.org/t/imu-filter-tool/43633

View File

@ -0,0 +1,269 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" ArduPilot IMU Filter Test Tool
This program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see <http://www.gnu.org/licenses/>.
"""
__author__ = "Guglielmo Cassinelli"
__contact__ = "gdguglie@gmail.com"
try: # Python 3.x
from tkinter import Tk
from tkinter.filedialog import askopenfilename
except ImportError: # Python 2.x
from Tkinter import Tk
from tkFileDialog import askopenfilename
import argparse
import ntpath
import numpy as np
from pymavlink import mavutil
"""
read command line parameters
"""
parser = argparse.ArgumentParser(description='ArduPilot IMU Filter Tester Tool. Input one log file from ')
parser.add_argument('file', nargs='?', default=None, help='bin log file containing raw IMU logs')
parser.add_argument('--begin-time', '-b', type=int, default=0, help='start from second')
parser.add_argument('--end-time', '-e', type=int, default=-1, help='end to second')
args = parser.parse_args()
log_file = args.file
begin_time = args.begin_time
end_time = args.end_time
# if log not input by command line
if not log_file:
# GUI log file chooser
root = Tk()
root.withdraw()
root.focus_force()
log_file = askopenfilename(title="Select log file", filetypes=(("log files", ".bin .log"), ("all files", "*.*")))
root.update()
root.destroy()
if log_file is None or log_file == "":
print("No log file to open")
quit()
log_name = ntpath.basename(log_file)
"""
default settings
"""
POST_FILTER_LOGGING_BIT = 2 ** 1
RAW_IMU_LOG_BIT = 2 ** 19
PREVENT_POST_FILTER_LOGS = False
PARAMS_TO_CHECK = [
"INS_LOG_BAT_OPT", "INS_GYRO_FILTER", "INS_ACCEL_FILTER",
"INS_NOTCH_ENABLE", "INS_NOTCH_FREQ", "INS_NOTCH_BW", "INS_NOTCH_ATT",
"INS_NOTCA_ENABLE", "INS_NOTCA_FREQ", "INS_NOTCA_BW", "INS_NOTCA_ATT",
"LOG_BITMASK"
]
DEFAULT_ACC_FILTER = 80 # hz
DEFAULT_GYR_FILTER = 80 # hz
DEFAULT_ACC_NOTCH_FREQ = 150 # hz
DEFAULT_ACC_NOTCH_ATTENUATION = 30 # db
DEFAULT_ACC_NOTCH_BANDWIDTH = 100 # hz
DEFAULT_GYR_NOTCH_FREQ = 145
DEFAULT_GYR_NOTCH_ATTENUATION = 30 # db
DEFAULT_GYR_NOTCH_BANDWIDTH = 100 # hz
ACCEL_NOTCH_FILTER = True
"""
load LOG
"""
print("Loading %s...\n" % log_name)
mlog = mavutil.mavlink_connection(log_file)
log_start_time = 0
log_end_time = 0
ACC_t = []
ACC_x = []
ACC_y = []
ACC_z = []
GYR_t = []
GYR_x = []
GYR_y = []
GYR_z = []
params = {}
while True:
m = mlog._parse_next()
"""
@type m DFMessage
"""
if m is None:
break
if m.fmt.name == "PARM":
# check param value
if m.Name in PARAMS_TO_CHECK:
print(m.Name, ", ", m.Value)
params[m.Name] = m.Value
try:
m_time_sec = m.TimeUS / 1000000.
if log_start_time == 0:
log_start_time = m_time_sec
if m_time_sec < begin_time:
continue
if end_time > 0 and m_time_sec > end_time:
continue
except AttributeError:
pass
if m.fmt.name == "ACC1":
ACC_t.append(m_time_sec)
ACC_x.append(m.AccX)
ACC_y.append(m.AccY)
ACC_z.append(m.AccZ)
elif m.fmt.name == "GYR1":
GYR_t.append(m_time_sec)
GYR_x.append(m.GyrX)
GYR_y.append(m.GyrY)
GYR_z.append(m.GyrZ)
def print_log_msg_stats(log_time_list, msg_name):
msg_count = len(log_time_list)
if msg_count > 0:
msg_total_time = log_time_list[-1] - log_time_list[0]
msg_freq = msg_count / msg_total_time
else:
msg_total_time = 0
msg_freq = 0
print("\n{} {} logs for a duration of {:.1f} secs".format(msg_count, msg_name, msg_total_time))
print(msg_name + " frequency = {:.2f} hz".format(msg_freq))
return msg_freq
def get_mean_and_std(np_arr):
mean = np.mean(np_arr)
std = np.std(np_arr)
return mean, std
def print_mean_and_std(np_arr, name=""):
mean, std = get_mean_and_std(np_arr)
print("{} mean {:.3f} std {:.3f}".format(name, mean, std))
def set_bit(number, bit_index, bit_value):
"""Set the index:th bit of v to 1 if x is truthy, else to 0, and return the new value."""
mask = 1 << bit_index # Compute mask, an integer with just bit 'index' set.
number &= ~mask # Clear the bit indicated by the mask (if x is False)
if bit_value:
number |= mask # If x was True, set the bit indicated by the mask.
return number # Return the result, we're done.
ACC_freq = print_log_msg_stats(ACC_t, "ACC")
GYR_freq = print_log_msg_stats(GYR_t, "GYR")
if not ACC_t or not GYR_t:
print("\nNo RAW IMU logs to analyze")
quit()
if "INS_LOG_BAT_OPT" in params:
log_bat_opt = int(params["INS_LOG_BAT_OPT"])
if log_bat_opt & POST_FILTER_LOGGING_BIT:
print("\nINS_LOG_BAT_OPT was set to {} which enables post filter logging,"
"use pre filter logging to not sum multiple filter passes.".format(log_bat_opt))
print("(set INS_LOG_BAT_OPT = {})".format(set_bit(log_bat_opt, 1, 0)))
if PREVENT_POST_FILTER_LOGS:
quit()
else:
print("couldn't check ")
if "LOG_BITMASK" in params:
log_bitmask = int(params["LOG_BITMASK"])
if not log_bitmask & RAW_IMU_LOG_BIT:
print("\nWARNING: LOG_BITMASK was not set to enable RAW_IMU logging, please enable it to have best resolution")
else:
print("\nWARNING: Cannot read LOG_BITMASK, please ensure to have enabled RAW_IMU logging")
# set filter parameters
print("Reading filter parameters to set initial filter values...")
if "INS_GYRO_FILTER" in params:
DEFAULT_GYR_FILTER = params["INS_GYRO_FILTER"]
if "INS_ACCEL_FILTER" in params:
DEFAULT_ACC_FILTER = params["INS_ACCEL_FILTER"]
if "INS_NOTCH_ENABLE" in params:
if params["INS_NOTCH_ENABLE"] != 0:
if "INS_NOTCH_ATT" in params:
DEFAULT_GYR_NOTCH_ATTENUATION = params["INS_NOTCH_ATT"]
else:
DEFAULT_GYR_NOTCH_ATTENUATION = 0
if "INS_NOTCH_BW" in params:
DEFAULT_GYR_NOTCH_BANDWIDTH = params["INS_NOTCH_BW"]
if "INS_NOTCH_FREQ" in params:
DEFAULT_GYR_NOTCH_FREQ = params["INS_NOTCH_FREQ"]
if "INS_NOTCA_ENABLE" in params:
if params["INS_NOTCA_ENABLE"] != 0:
if "INS_NOTCA_ATT" in params:
DEFAULT_ACC_NOTCH_ATTENUATION = params["INS_NOTCA_ATT"]
else:
DEFAULT_ACC_NOTCH_ATTENUATION = 0
if "INS_NOTCA_BW" in params:
DEFAULT_ACC_NOTCH_BANDWIDTH = params["INS_NOTCA_BW"]
if "INS_NOTCA_FREQ" in params:
DEFAULT_ACC_NOTCH_FREQ = params["INS_NOTCA_FREQ"]
else:
print("The firmware that produced this log does not support notch filter on accelerometer")
ACCEL_NOTCH_FILTER = False
"""
run filter tet
"""
from FilterTest import FilterTest
filter_test = FilterTest(ACC_t, ACC_x, ACC_y, ACC_z, GYR_t, GYR_x, GYR_y, GYR_z, ACC_freq, GYR_freq,
DEFAULT_ACC_FILTER, DEFAULT_GYR_FILTER,
DEFAULT_ACC_NOTCH_FREQ, DEFAULT_ACC_NOTCH_ATTENUATION, DEFAULT_ACC_NOTCH_BANDWIDTH,
DEFAULT_GYR_NOTCH_FREQ, DEFAULT_GYR_NOTCH_ATTENUATION, DEFAULT_GYR_NOTCH_BANDWIDTH,
log_name, ACCEL_NOTCH_FILTER)