mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-23 09:08:30 -04:00
AHRS: revert to the old drift correction algorithm
we need to work out why Craigs quad flipped today before we enable this new drift correction
This commit is contained in:
parent
70bfacc350
commit
8600ad8d7f
@ -28,8 +28,7 @@ public:
|
||||
// Constructor
|
||||
AP_AHRS(IMU *imu, GPS *&gps):
|
||||
_imu(imu),
|
||||
_gps(gps),
|
||||
_barometer(NULL)
|
||||
_gps(gps)
|
||||
{
|
||||
// base the ki values by the sensors maximum drift
|
||||
// rate. The APM2 has gyros which are much less drift
|
||||
@ -90,6 +89,9 @@ protected:
|
||||
// pointer to compass object, if enabled
|
||||
Compass * _compass;
|
||||
|
||||
// pointer to compass object, if enabled
|
||||
AP_Baro * _barometer;
|
||||
|
||||
// time in microseconds of last compass update
|
||||
uint32_t _compass_last_update;
|
||||
|
||||
@ -97,10 +99,8 @@ protected:
|
||||
// IMU under us without our noticing.
|
||||
IMU *_imu;
|
||||
GPS *&_gps;
|
||||
AP_Baro *_barometer;
|
||||
|
||||
// true if we can assume the aircraft will be flying forward
|
||||
// on its X axis
|
||||
// true if we are doing centripetal acceleration correction
|
||||
bool _fly_forward;
|
||||
|
||||
// the limit of the gyro drift claimed by the sensors, in
|
||||
|
@ -23,12 +23,6 @@
|
||||
// from the GPS and wait for the ground speed to get above GPS_SPEED_MIN
|
||||
#define GPS_SPEED_RESET 100
|
||||
|
||||
// the limit (in degrees/second) beyond which we stop integrating
|
||||
// omega_I. At larger spin rates the DCM PI controller can get 'dizzy'
|
||||
// which results in false gyro drift. See
|
||||
// http://gentlenav.googlecode.com/files/fastRotations.pdf
|
||||
#define SPIN_RATE_LIMIT 20
|
||||
|
||||
// table of user settable parameters
|
||||
const AP_Param::GroupInfo AP_AHRS::var_info[] PROGMEM = {
|
||||
// @Param: YAW_P
|
||||
@ -76,13 +70,49 @@ AP_AHRS_DCM::update(void)
|
||||
void
|
||||
AP_AHRS_DCM::matrix_update(float _G_Dt)
|
||||
{
|
||||
// Equation 16, adding proportional and integral correction terms
|
||||
_omega = _gyro_vector + _omega_I + _omega_P + _omega_yaw_P;
|
||||
// _omega_integ_corr is used for _centripetal correction
|
||||
// (theoretically better than _omega)
|
||||
_omega_integ_corr = _gyro_vector + _omega_I;
|
||||
|
||||
_dcm_matrix.rotate(_omega * _G_Dt);
|
||||
// Equation 16, adding proportional and integral correction terms
|
||||
_omega = _omega_integ_corr + _omega_P + _omega_yaw_P;
|
||||
|
||||
// this is a replacement of the DCM matrix multiply (equation
|
||||
// 17), with known zero elements removed and the matrix
|
||||
// operations inlined. This runs much faster than the original
|
||||
// version of this code, as the compiler was doing a terrible
|
||||
// job of realising that so many of the factors were in common
|
||||
// or zero. It also uses much less stack, as we no longer need
|
||||
// two additional local matrices
|
||||
|
||||
Vector3f r = _omega * _G_Dt;
|
||||
_dcm_matrix.rotate(r);
|
||||
}
|
||||
|
||||
|
||||
// adjust an accelerometer vector for known acceleration forces
|
||||
void
|
||||
AP_AHRS_DCM::accel_adjust(Vector3f &accel)
|
||||
{
|
||||
float veloc;
|
||||
// compensate for linear acceleration. This makes a
|
||||
// surprisingly large difference in the pitch estimate when
|
||||
// turning, plus on takeoff and landing
|
||||
float acceleration = _gps->acceleration();
|
||||
accel.x -= acceleration;
|
||||
|
||||
// compensate for centripetal acceleration
|
||||
veloc = _gps->ground_speed * 0.01;
|
||||
|
||||
// We are working with a modified version of equation 26 as
|
||||
// our IMU object reports acceleration in the positive axis
|
||||
// direction as positive
|
||||
|
||||
// Equation 26 broken up into separate pieces
|
||||
accel.y -= _omega_integ_corr.z * veloc;
|
||||
accel.z += _omega_integ_corr.y * veloc;
|
||||
}
|
||||
|
||||
/*
|
||||
reset the DCM matrix and omega. Used on ground start, and on
|
||||
extreme errors in the matrix
|
||||
@ -94,6 +124,7 @@ AP_AHRS_DCM::reset(bool recover_eulers)
|
||||
_omega_I.zero();
|
||||
_omega_P.zero();
|
||||
_omega_yaw_P.zero();
|
||||
_omega_integ_corr.zero();
|
||||
_omega.zero();
|
||||
|
||||
// if the caller wants us to try to recover to the current
|
||||
@ -228,262 +259,216 @@ AP_AHRS_DCM::normalize(void)
|
||||
}
|
||||
|
||||
|
||||
// produce a yaw error value. The returned value is proportional
|
||||
// to sin() of the current heading error in earth frame
|
||||
float
|
||||
AP_AHRS_DCM::yaw_error_compass(void)
|
||||
{
|
||||
Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, _compass->mag_z);
|
||||
// get the mag vector in the earth frame
|
||||
Vector3f rb = _dcm_matrix * mag;
|
||||
|
||||
rb.normalize();
|
||||
if (rb.is_inf()) {
|
||||
// not a valid vector
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
// get the earths magnetic field (only X and Y components needed)
|
||||
Vector3f mag_earth = Vector3f(cos(_compass->get_declination()),
|
||||
sin(_compass->get_declination()), 0);
|
||||
|
||||
// calculate the error term in earth frame
|
||||
Vector3f error = rb % mag_earth;
|
||||
|
||||
return error.z;
|
||||
}
|
||||
|
||||
// produce a yaw error value using the GPS. The returned value is proportional
|
||||
// to sin() of the current heading error in earth frame
|
||||
float
|
||||
AP_AHRS_DCM::yaw_error_gps(void)
|
||||
{
|
||||
return sin(ToRad(_gps->ground_course * 0.01) - yaw);
|
||||
}
|
||||
|
||||
|
||||
float
|
||||
AP_AHRS_DCM::_P_gain(float spin_rate)
|
||||
{
|
||||
if (spin_rate < ToDeg(50)) {
|
||||
return 1.0;
|
||||
}
|
||||
if (spin_rate > ToDeg(500)) {
|
||||
return 10.0;
|
||||
}
|
||||
return spin_rate/ToDeg(50);
|
||||
}
|
||||
|
||||
// yaw drift correction using the compass or GPS
|
||||
// this function prodoces the _omega_yaw_P vector, and also
|
||||
// contributes to the _omega_I.z long term yaw drift estimate
|
||||
void
|
||||
AP_AHRS_DCM::drift_correction_yaw(void)
|
||||
{
|
||||
bool new_value = false;
|
||||
float yaw_error;
|
||||
float yaw_deltat;
|
||||
|
||||
if (_compass && _compass->use_for_yaw()) {
|
||||
if (_compass->last_update != _compass_last_update) {
|
||||
yaw_deltat = (_compass->last_update - _compass_last_update) * 1.0e-6;
|
||||
_compass_last_update = _compass->last_update;
|
||||
if (!_have_initial_yaw) {
|
||||
float heading = _compass->calculate_heading(_dcm_matrix);
|
||||
_dcm_matrix.from_euler(roll, pitch, heading);
|
||||
_omega_yaw_P.zero();
|
||||
_have_initial_yaw = true;
|
||||
}
|
||||
new_value = true;
|
||||
yaw_error = yaw_error_compass();
|
||||
}
|
||||
} else if (_gps && _gps->status() == GPS::GPS_OK) {
|
||||
if (_gps->last_fix_time != _gps_last_update &&
|
||||
_gps->ground_speed >= GPS_SPEED_MIN) {
|
||||
yaw_deltat = (_gps->last_fix_time - _gps_last_update) * 1.0e-3;
|
||||
_gps_last_update = _gps->last_fix_time;
|
||||
if (!_have_initial_yaw) {
|
||||
_dcm_matrix.from_euler(roll, pitch, ToRad(_gps->ground_course*0.01));
|
||||
_omega_yaw_P.zero();
|
||||
_have_initial_yaw = true;
|
||||
}
|
||||
new_value = true;
|
||||
yaw_error = yaw_error_gps();
|
||||
}
|
||||
}
|
||||
|
||||
if (!new_value) {
|
||||
// we don't have any new yaw information
|
||||
// slowly decay _omega_yaw_P to cope with loss
|
||||
// of our yaw source
|
||||
_omega_yaw_P.z *= 0.97;
|
||||
return;
|
||||
}
|
||||
|
||||
// the yaw error is a vector in earth frame
|
||||
Vector3f error = Vector3f(0,0, yaw_error);
|
||||
|
||||
// convert the error vector to body frame
|
||||
error = _dcm_matrix.mul_transpose(error);
|
||||
|
||||
// the spin rate changes the P gain, and disables the
|
||||
// integration at higher rates
|
||||
float spin_rate = _omega.length();
|
||||
|
||||
// update the proportional control to drag the
|
||||
// yaw back to the right value. We use a gain
|
||||
// that depends on the spin rate. See the fastRotations.pdf
|
||||
// paper from Bill Premerlani
|
||||
_omega_yaw_P = error * _P_gain(spin_rate) * _kp_yaw.get();
|
||||
|
||||
// don't update the drift term if we lost the yaw reference
|
||||
// for more than 2 seconds
|
||||
if (yaw_deltat < 2.0 && spin_rate < ToRad(SPIN_RATE_LIMIT)) {
|
||||
// also add to the I term
|
||||
_omega_I_sum.z += error.z * _ki_yaw * yaw_deltat;
|
||||
}
|
||||
|
||||
_error_yaw_sum += fabs(yaw_error);
|
||||
_error_yaw_count++;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// perform drift correction. This function aims to update _omega_P and
|
||||
// _omega_I with our best estimate of the short term and long term
|
||||
// gyro error. The _omega_P value is what pulls our attitude solution
|
||||
// back towards the reference vector quickly. The _omega_I term is an
|
||||
// attempt to learn the long term drift rate of the gyros.
|
||||
//
|
||||
// This drift correction implementation is based on a paper
|
||||
// by Bill Premerlani from here:
|
||||
// http://gentlenav.googlecode.com/files/RollPitchDriftCompensation.pdf
|
||||
// This function also updates _omega_yaw_P with a yaw correction term
|
||||
// from our yaw reference vector
|
||||
void
|
||||
AP_AHRS_DCM::drift_correction(float deltat)
|
||||
{
|
||||
Vector3f error;
|
||||
Vector3f velocity;
|
||||
uint32_t last_correction_time;
|
||||
bool use_gps = true;
|
||||
float error_course = 0;
|
||||
Vector3f accel;
|
||||
Vector3f error;
|
||||
float error_norm = 0;
|
||||
float yaw_deltat = 0;
|
||||
|
||||
// perform yaw drift correction if we have a new yaw reference
|
||||
// vector
|
||||
drift_correction_yaw();
|
||||
accel = _accel_vector;
|
||||
|
||||
// integrate the accel vector in the earth frame between GPS readings
|
||||
_ra_sum += _dcm_matrix * (_accel_vector * deltat);
|
||||
// if enabled, use the GPS to correct our accelerometer vector
|
||||
// for centripetal forces
|
||||
if(_fly_forward &&
|
||||
_gps != NULL &&
|
||||
_gps->status() == GPS::GPS_OK) {
|
||||
accel_adjust(accel);
|
||||
}
|
||||
|
||||
// keep a sum of the deltat values, so we know how much time
|
||||
// we have integrated over
|
||||
_ra_deltat += deltat;
|
||||
|
||||
// check if we have GPS lock
|
||||
if (_gps == NULL || _gps->status() != GPS::GPS_OK) {
|
||||
use_gps = false;
|
||||
}
|
||||
//*****Roll and Pitch***************
|
||||
|
||||
// a copter (which has _fly_forward false) which doesn't have a
|
||||
// compass for yaw can't rely on the GPS velocity lining up with
|
||||
// the earth frame from DCM, so it needs to assume zero velocity
|
||||
// in the drift correction
|
||||
if (!_fly_forward && !(_compass && _compass->use_for_yaw())) {
|
||||
use_gps = false;
|
||||
}
|
||||
// normalise the accelerometer vector to a standard length
|
||||
// this is important to reduce the impact of noise on the
|
||||
// drift correction, as very noisy vectors tend to have
|
||||
// abnormally high lengths. By normalising the length we
|
||||
// reduce their impact.
|
||||
float accel_length = accel.length();
|
||||
accel *= (_gravity / accel_length);
|
||||
if (accel.is_inf()) {
|
||||
// we can't do anything useful with this sample
|
||||
_omega_P.zero();
|
||||
return;
|
||||
}
|
||||
|
||||
if (use_gps == false) {
|
||||
// no GPS, or no lock. We assume zero velocity. This at
|
||||
// least means we can cope with gyro drift while sitting
|
||||
// on a bench with no GPS lock
|
||||
if (_ra_deltat < 0.1) {
|
||||
// not enough time has accumulated
|
||||
return;
|
||||
}
|
||||
velocity.zero();
|
||||
_last_velocity.zero();
|
||||
last_correction_time = millis();
|
||||
} else {
|
||||
if (_gps->last_fix_time == _ra_sum_start) {
|
||||
// we don't have a new GPS fix - nothing more to do
|
||||
return;
|
||||
}
|
||||
velocity = Vector3f(_gps->velocity_north(), _gps->velocity_east(), 0);
|
||||
last_correction_time = _gps->last_fix_time;
|
||||
}
|
||||
// calculate the error, in m/2^2, between the attitude
|
||||
// implied by the accelerometers and the attitude
|
||||
// in the current DCM matrix
|
||||
error = _dcm_matrix.c % accel;
|
||||
|
||||
// even without GPS lock we can correct for the vertical acceleration
|
||||
if (_barometer != NULL) {
|
||||
// Z velocity is down
|
||||
velocity.z = - _barometer->get_climb_rate();
|
||||
}
|
||||
// Limit max error to limit the effect of noisy values
|
||||
// on the algorithm. This limits the error to about 11
|
||||
// degrees
|
||||
error_norm = error.length();
|
||||
if (error_norm > 2) {
|
||||
error *= (2 / error_norm);
|
||||
}
|
||||
|
||||
// see if this is our first time through - in which case we
|
||||
// just setup the start times and return
|
||||
if (_ra_sum_start == 0) {
|
||||
_ra_sum_start = last_correction_time;
|
||||
_last_velocity = velocity;
|
||||
return;
|
||||
}
|
||||
// we now want to calculate _omega_P and _omega_I. The
|
||||
// _omega_P value is what drags us quickly to the
|
||||
// accelerometer reading.
|
||||
_omega_P = error * _kp_roll_pitch;
|
||||
|
||||
// get the corrected acceleration vector in earth frame. Units
|
||||
// are m/s/s
|
||||
Vector3f ge;
|
||||
float v_scale = 1.0/(_ra_deltat*_gravity);
|
||||
ge = Vector3f(0, 0, -1.0) + ((velocity - _last_velocity) * v_scale);
|
||||
// the _omega_I is the long term accumulated gyro
|
||||
// error. This determines how much gyro drift we can
|
||||
// handle.
|
||||
_omega_I_sum += error * (_ki_roll_pitch * deltat);
|
||||
_omega_I_sum_time += deltat;
|
||||
|
||||
// calculate the error term in earth frame.
|
||||
ge.normalize();
|
||||
_ra_sum.normalize();
|
||||
if (_ra_sum.is_inf() || ge.is_inf()) {
|
||||
// the _ra_sum length is zero - we are falling with
|
||||
// no apparent gravity. This gives us no information
|
||||
// about which way up we are, so treat the error as zero
|
||||
error = Vector3f(0,0,0);
|
||||
} else {
|
||||
error = _ra_sum % ge;
|
||||
}
|
||||
// these sums support the reporting of the DCM state via MAVLink
|
||||
_error_rp_sum += error_norm;
|
||||
_error_rp_count++;
|
||||
|
||||
_error_rp_sum += error.length();
|
||||
_error_rp_count++;
|
||||
// yaw drift correction
|
||||
|
||||
// convert the error term to body frame
|
||||
error = _dcm_matrix.mul_transpose(error);
|
||||
// we only do yaw drift correction when we get a new yaw
|
||||
// reference vector. In between times we rely on the gyros for
|
||||
// yaw. Avoiding this calculation on every call to
|
||||
// update_DCM() saves a lot of time
|
||||
if (_compass && _compass->use_for_yaw()) {
|
||||
if (_compass->last_update != _compass_last_update) {
|
||||
yaw_deltat = 1.0e-6*(_compass->last_update - _compass_last_update);
|
||||
if (_have_initial_yaw && yaw_deltat < 2.0) {
|
||||
// Equation 23, Calculating YAW error
|
||||
// We make the gyro YAW drift correction based
|
||||
// on compass magnetic heading
|
||||
float heading_x, heading_y;
|
||||
float heading = _compass->calculate_heading(_dcm_matrix);
|
||||
heading_x = cos(heading);
|
||||
heading_y = sin(heading);
|
||||
error_course = (_dcm_matrix.a.x * heading_y) - (_dcm_matrix.b.x * heading_x);
|
||||
_compass_last_update = _compass->last_update;
|
||||
} else {
|
||||
// this is our first estimate of the yaw,
|
||||
// or the compass has come back online after
|
||||
// no readings for 2 seconds.
|
||||
//
|
||||
// construct a DCM matrix based on the current
|
||||
// roll/pitch and the compass heading.
|
||||
// First ensure the compass heading has been
|
||||
// calculated
|
||||
float heading = _compass->calculate_heading(_dcm_matrix);
|
||||
|
||||
// base the P gain on the spin rate
|
||||
float spin_rate = _omega.length();
|
||||
// now construct a new DCM matrix
|
||||
_dcm_matrix.from_euler(roll, pitch, heading);
|
||||
_have_initial_yaw = true;
|
||||
_compass_last_update = _compass->last_update;
|
||||
error_course = 0;
|
||||
}
|
||||
}
|
||||
} else if (_gps && _gps->status() == GPS::GPS_OK) {
|
||||
if (_gps->last_fix_time != _gps_last_update) {
|
||||
// Use GPS Ground course to correct yaw gyro drift
|
||||
if (_gps->ground_speed >= GPS_SPEED_MIN) {
|
||||
yaw_deltat = 1.0e-3*(_gps->last_fix_time - _gps_last_update);
|
||||
if (_have_initial_yaw && yaw_deltat < 2.0) {
|
||||
float course_over_ground_x = cos(ToRad(_gps->ground_course/100.0));
|
||||
float course_over_ground_y = sin(ToRad(_gps->ground_course/100.0));
|
||||
// Equation 23, Calculating YAW error
|
||||
error_course = (_dcm_matrix.a.x * course_over_ground_y) - (_dcm_matrix.b.x * course_over_ground_x);
|
||||
_gps_last_update = _gps->last_fix_time;
|
||||
} else {
|
||||
// when we first start moving, set the
|
||||
// DCM matrix to the current
|
||||
// roll/pitch values, but with yaw
|
||||
// from the GPS
|
||||
_dcm_matrix.from_euler(roll, pitch, ToRad(_gps->ground_course));
|
||||
_have_initial_yaw = true;
|
||||
error_course = 0;
|
||||
_gps_last_update = _gps->last_fix_time;
|
||||
}
|
||||
} else if (_gps->ground_speed >= GPS_SPEED_RESET) {
|
||||
// we are not going fast enough to use GPS for
|
||||
// course correction, but we won't reset
|
||||
// _have_initial_yaw yet, instead we just let
|
||||
// the gyro handle yaw
|
||||
error_course = 0;
|
||||
} else {
|
||||
// we are moving very slowly. Reset
|
||||
// _have_initial_yaw and adjust our heading
|
||||
// rapidly next time we get a good GPS ground
|
||||
// speed
|
||||
error_course = 0;
|
||||
_have_initial_yaw = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// we now want to calculate _omega_P and _omega_I. The
|
||||
// _omega_P value is what drags us quickly to the
|
||||
// accelerometer reading.
|
||||
_omega_P = error * _P_gain(spin_rate) * _kp;
|
||||
// see if there is any error in our heading relative to the
|
||||
// yaw reference. This will be zero most of the time, as we
|
||||
// only calculate it when we get new data from the yaw
|
||||
// reference source
|
||||
if (yaw_deltat == 0 || error_course == 0) {
|
||||
// we don't have a new reference heading. Slowly
|
||||
// decay the _omega_yaw_P to ensure that if we have
|
||||
// lost the yaw reference sensor completely we don't
|
||||
// keep using a stale offset
|
||||
_omega_yaw_P *= 0.97;
|
||||
goto check_sum_time;
|
||||
}
|
||||
|
||||
// accumulate some integrator error
|
||||
if (spin_rate < ToRad(SPIN_RATE_LIMIT)) {
|
||||
_omega_I_sum += error * _ki * _ra_deltat;
|
||||
_omega_I_sum_time += _ra_deltat;
|
||||
}
|
||||
// ensure the course error is scaled from -PI to PI
|
||||
if (error_course > PI) {
|
||||
error_course -= 2*PI;
|
||||
} else if (error_course < -PI) {
|
||||
error_course += 2*PI;
|
||||
}
|
||||
|
||||
if (_omega_I_sum_time >= 5) {
|
||||
// limit the rate of change of omega_I to the hardware
|
||||
// reported maximum gyro drift rate. This ensures that
|
||||
// short term errors don't cause a buildup of omega_I
|
||||
// beyond the physical limits of the device
|
||||
float change_limit = _gyro_drift_limit * _omega_I_sum_time;
|
||||
_omega_I_sum.x = constrain(_omega_I_sum.x, -change_limit, change_limit);
|
||||
_omega_I_sum.y = constrain(_omega_I_sum.y, -change_limit, change_limit);
|
||||
_omega_I_sum.z = constrain(_omega_I_sum.z, -change_limit, change_limit);
|
||||
_omega_I += _omega_I_sum;
|
||||
_omega_I_sum.zero();
|
||||
_omega_I_sum_time = 0;
|
||||
}
|
||||
// Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft
|
||||
// this gives us an error in radians
|
||||
error = _dcm_matrix.c * error_course;
|
||||
|
||||
// zero our accumulator ready for the next GPS step
|
||||
_ra_sum.zero();
|
||||
_ra_deltat = 0;
|
||||
_ra_sum_start = last_correction_time;
|
||||
// Adding yaw correction to proportional correction vector. We
|
||||
// allow the yaw reference source to affect all 3 components
|
||||
// of _omega_yaw_P as we need to be able to correctly hold a
|
||||
// heading when roll and pitch are non-zero
|
||||
_omega_yaw_P = error * _kp_yaw.get();
|
||||
|
||||
// remember the velocity for next time
|
||||
_last_velocity = velocity;
|
||||
// add yaw correction to integrator correction vector, but
|
||||
// only for the z gyro. We rely on the accelerometers for x
|
||||
// and y gyro drift correction. Using the compass or GPS for
|
||||
// x/y drift correction is too inaccurate, and can lead to
|
||||
// incorrect builups in the x/y drift. We rely on the
|
||||
// accelerometers to get the x/y components right
|
||||
_omega_I_sum.z += error.z * (_ki_yaw * yaw_deltat);
|
||||
|
||||
// we keep the sum of yaw error for reporting via MAVLink.
|
||||
_error_yaw_sum += error_course;
|
||||
_error_yaw_count++;
|
||||
|
||||
check_sum_time:
|
||||
if (_omega_I_sum_time > 10) {
|
||||
// every 10 seconds we apply the accumulated
|
||||
// _omega_I_sum changes to _omega_I. We do this to
|
||||
// prevent short term feedback between the P and I
|
||||
// terms of the controller. The _omega_I vector is
|
||||
// supposed to refect long term gyro drift, but with
|
||||
// high noise it can start to build up due to short
|
||||
// term interactions. By summing it over 10 seconds we
|
||||
// prevent the short term interactions and can apply
|
||||
// the slope limit more accurately
|
||||
float drift_limit = _gyro_drift_limit * _omega_I_sum_time;
|
||||
_omega_I_sum.x = constrain(_omega_I_sum.x, -drift_limit, drift_limit);
|
||||
_omega_I_sum.y = constrain(_omega_I_sum.y, -drift_limit, drift_limit);
|
||||
_omega_I_sum.z = constrain(_omega_I_sum.z, -drift_limit, drift_limit);
|
||||
|
||||
_omega_I += _omega_I_sum;
|
||||
|
||||
// zero the sum
|
||||
_omega_I_sum.zero();
|
||||
_omega_I_sum_time = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -16,15 +16,15 @@ public:
|
||||
// Constructors
|
||||
AP_AHRS_DCM(IMU *imu, GPS *&gps) : AP_AHRS(imu, gps)
|
||||
{
|
||||
_dcm_matrix.identity();
|
||||
_kp_roll_pitch = 0.13;
|
||||
_kp_yaw.set(0.2);
|
||||
_dcm_matrix(Vector3f(1, 0, 0),
|
||||
Vector3f(0, 1, 0),
|
||||
Vector3f(0, 0, 1));
|
||||
|
||||
// these are experimentally derived from the simulator
|
||||
// with large drift levels
|
||||
_ki = 0.0087;
|
||||
_ki_yaw = 0.01;
|
||||
|
||||
_kp = 0.4;
|
||||
_kp_yaw.set(0.4);
|
||||
// base the ki values on the sensors drift rate
|
||||
_ki_roll_pitch = _gyro_drift_limit * 5;
|
||||
_ki_yaw = _gyro_drift_limit * 8;
|
||||
}
|
||||
|
||||
// return the smoothed gyro vector corrected for drift
|
||||
@ -46,20 +46,18 @@ public:
|
||||
AP_Float _kp_yaw;
|
||||
|
||||
private:
|
||||
float _kp;
|
||||
float _ki;
|
||||
float _kp_roll_pitch;
|
||||
float _ki_roll_pitch;
|
||||
float _ki_yaw;
|
||||
bool _have_initial_yaw;
|
||||
|
||||
// Methods
|
||||
void accel_adjust(Vector3f &accel);
|
||||
void matrix_update(float _G_Dt);
|
||||
void normalize(void);
|
||||
void check_matrix(void);
|
||||
bool renorm(Vector3f const &a, Vector3f &result);
|
||||
void drift_correction(float deltat);
|
||||
void drift_correction_yaw(void);
|
||||
float yaw_error_compass();
|
||||
float yaw_error_gps();
|
||||
void euler_angles(void);
|
||||
|
||||
// primary representation of attitude
|
||||
@ -68,16 +66,14 @@ private:
|
||||
Vector3f _gyro_vector; // Store the gyros turn rate in a vector
|
||||
Vector3f _accel_vector; // current accel vector
|
||||
|
||||
Vector3f _omega_P; // accel Omega proportional correction
|
||||
Vector3f _omega_yaw_P; // proportional yaw correction
|
||||
Vector3f _omega_P; // accel Omega Proportional correction
|
||||
Vector3f _omega_yaw_P; // yaw Omega Proportional correction
|
||||
Vector3f _omega_I; // Omega Integrator correction
|
||||
Vector3f _omega_I_sum;
|
||||
Vector3f _omega_I_sum; // summation vector for omegaI
|
||||
float _omega_I_sum_time;
|
||||
Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction
|
||||
Vector3f _omega; // Corrected Gyro_Vector data
|
||||
|
||||
// P term gain based on spin rate
|
||||
float _P_gain(float spin_rate);
|
||||
|
||||
// state to support status reporting
|
||||
float _renorm_val_sum;
|
||||
uint16_t _renorm_val_count;
|
||||
@ -90,15 +86,6 @@ private:
|
||||
|
||||
// time in millis when we last got a GPS heading
|
||||
uint32_t _gps_last_update;
|
||||
|
||||
// state of accel drift correction
|
||||
Vector3f _ra_sum;
|
||||
Vector3f _last_velocity;
|
||||
float _ra_deltat;
|
||||
uint32_t _ra_sum_start;
|
||||
|
||||
// current drift error in earth frame
|
||||
Vector3f _drift_error_earth;
|
||||
};
|
||||
|
||||
#endif // AP_AHRS_DCM_H
|
||||
|
Loading…
Reference in New Issue
Block a user