mirror of https://github.com/ArduPilot/ardupilot
Plane: new tilt compensation method
This commit is contained in:
parent
401b8d4fa6
commit
6fdaaa7d98
|
@ -304,6 +304,7 @@ private:
|
||||||
|
|
||||||
void tiltrotor_slew(float tilt);
|
void tiltrotor_slew(float tilt);
|
||||||
void tiltrotor_update(void);
|
void tiltrotor_update(void);
|
||||||
|
void tilt_compensate(float *thrust, uint8_t num_motors);
|
||||||
|
|
||||||
public:
|
public:
|
||||||
void motor_test_output();
|
void motor_test_output();
|
||||||
|
|
|
@ -19,27 +19,8 @@ void QuadPlane::tiltrotor_slew(float newtilt)
|
||||||
// translate to 0..1000 range and output
|
// translate to 0..1000 range and output
|
||||||
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_motor_tilt, 1000 * tilt.current_tilt);
|
RC_Channel_aux::set_servo_out(RC_Channel_aux::k_motor_tilt, 1000 * tilt.current_tilt);
|
||||||
|
|
||||||
/*
|
// setup tilt compensation
|
||||||
we need to tell AP_Motors about the tilt so it can compensate
|
motors->set_thrust_compensation_callback(FUNCTOR_BIND_MEMBER(&QuadPlane::tilt_compensate, void, float *, uint8_t));
|
||||||
for reduced vertical thrust
|
|
||||||
*/
|
|
||||||
float tilt_factor;
|
|
||||||
if (tilt.current_tilt > 0.98f) {
|
|
||||||
tilt_factor = 1.0 / cosf(radians(0.98f*90));
|
|
||||||
} else {
|
|
||||||
tilt_factor = 1.0 / cosf(radians(tilt.current_tilt*90));
|
|
||||||
}
|
|
||||||
|
|
||||||
// when we got past Q_TILT_MAX we gang the tilted motors together
|
|
||||||
// to generate equal thrust. This makes them act as a single pitch
|
|
||||||
// control motor while preventing them trying to do roll and yaw
|
|
||||||
// control while angled over. This greatly improves the stability
|
|
||||||
// of the last phase of transitions
|
|
||||||
float tilt_threshold = (tilt.max_angle_deg/90.0f);
|
|
||||||
bool equal_thrust = (tilt.current_tilt > tilt_threshold);
|
|
||||||
|
|
||||||
// tell motors library about the tilt
|
|
||||||
motors->set_motor_tilt_factor(tilt_factor, tilt.tilt_mask, equal_thrust);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
@ -121,3 +102,75 @@ void QuadPlane::tiltrotor_update(void)
|
||||||
tiltrotor_slew(settilt * tilt.max_angle_deg / 90.0f);
|
tiltrotor_slew(settilt * tilt.max_angle_deg / 90.0f);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/*
|
||||||
|
compensate for tilt in a set of motor outputs
|
||||||
|
|
||||||
|
Compensation is of two forms. The first is to apply _tilt_factor,
|
||||||
|
which is a compensation for the reduces vertical thrust when
|
||||||
|
tilted. This is supplied by set_motor_tilt_factor().
|
||||||
|
|
||||||
|
The second compensation is to use equal thrust on all tilted motors
|
||||||
|
when _tilt_equal_thrust is true. This is used when the motors are
|
||||||
|
tilted by a large angle to prevent the roll and yaw controllers from
|
||||||
|
causing instability. Typically this would be used when the motors
|
||||||
|
are tilted beyond 45 degrees. At this angle it is assumed that roll
|
||||||
|
control can be achieved using fixed wing control surfaces and yaw
|
||||||
|
control with the remaining multicopter motors (eg. tricopter tail).
|
||||||
|
|
||||||
|
By applying _tilt_equal_thrust the tilted motors effectively become
|
||||||
|
a single pitch control motor.
|
||||||
|
*/
|
||||||
|
void QuadPlane::tilt_compensate(float *thrust, uint8_t num_motors)
|
||||||
|
{
|
||||||
|
float tilt_factor;
|
||||||
|
if (tilt.current_tilt > 0.98f) {
|
||||||
|
tilt_factor = 1.0 / cosf(radians(0.98f*90));
|
||||||
|
} else {
|
||||||
|
tilt_factor = 1.0 / cosf(radians(tilt.current_tilt*90));
|
||||||
|
}
|
||||||
|
|
||||||
|
// when we got past Q_TILT_MAX we gang the tilted motors together
|
||||||
|
// to generate equal thrust. This makes them act as a single pitch
|
||||||
|
// control motor while preventing them trying to do roll and yaw
|
||||||
|
// control while angled over. This greatly improves the stability
|
||||||
|
// of the last phase of transitions
|
||||||
|
float tilt_threshold = (tilt.max_angle_deg/90.0f);
|
||||||
|
bool equal_thrust = (tilt.current_tilt > tilt_threshold);
|
||||||
|
|
||||||
|
float tilt_total = 0;
|
||||||
|
uint8_t tilt_count = 0;
|
||||||
|
uint8_t mask = tilt.tilt_mask;
|
||||||
|
|
||||||
|
// apply _tilt_factor first
|
||||||
|
for (uint8_t i=0; i<num_motors; i++) {
|
||||||
|
if (mask & (1U<<i)) {
|
||||||
|
thrust[i] *= tilt_factor;
|
||||||
|
tilt_total += thrust[i];
|
||||||
|
tilt_count++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
float largest_tilted = 0;
|
||||||
|
|
||||||
|
// now constrain and apply _tilt_equal_thrust if enabled
|
||||||
|
for (uint8_t i=0; i<num_motors; i++) {
|
||||||
|
if (mask & (1U<<i)) {
|
||||||
|
if (equal_thrust) {
|
||||||
|
thrust[i] = tilt_total / tilt_count;
|
||||||
|
}
|
||||||
|
largest_tilted = MAX(largest_tilted, thrust[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// if we are saturating one of the tilted motors then reduce all
|
||||||
|
// motors to keep them in proportion to the original thrust. This
|
||||||
|
// helps maintain stability when tilted at a large angle
|
||||||
|
if (largest_tilted > 1.0f) {
|
||||||
|
float scale = 1.0f / largest_tilted;
|
||||||
|
for (uint8_t i=0; i<num_motors; i++) {
|
||||||
|
thrust[i] *= scale;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue