mirror of https://github.com/ArduPilot/ardupilot
297 lines
12 KiB
C++
297 lines
12 KiB
C++
|
/*
|
||
|
AP_Quaternion code, based on quaternion code from Jeb Madgwick
|
||
|
|
||
|
See http://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf
|
||
|
|
||
|
adapted to APM by Andrew Tridgell
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later
|
||
|
version.
|
||
|
*/
|
||
|
#include <AP_Quaternion.h>
|
||
|
|
||
|
#define ToRad(x) (x*0.01745329252) // *pi/180
|
||
|
#define ToDeg(x) (x*57.2957795131) // *180/pi
|
||
|
|
||
|
// this is the speed in cm/s above which we first get a yaw lock with
|
||
|
// the GPS
|
||
|
#define GPS_SPEED_MIN 300
|
||
|
|
||
|
// this is the speed in cm/s at which we stop using drift correction
|
||
|
// from the GPS and wait for the ground speed to get above GPS_SPEED_MIN
|
||
|
#define GPS_SPEED_RESET 100
|
||
|
|
||
|
void
|
||
|
AP_Quaternion::set_compass(Compass *compass)
|
||
|
{
|
||
|
_compass = compass;
|
||
|
}
|
||
|
|
||
|
// Function to compute one quaternion iteration without magnetometer
|
||
|
void AP_Quaternion::update_IMU(float deltat, Vector3f &gyro, Vector3f &accel)
|
||
|
{
|
||
|
// Local system variables
|
||
|
float norm; // vector norm
|
||
|
float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion derrivative from gyroscopes elements
|
||
|
float f_1, f_2, f_3; // objective function elements
|
||
|
float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
|
||
|
float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error
|
||
|
|
||
|
// Axulirary variables to avoid reapeated calcualtions
|
||
|
float halfSEq_1 = 0.5f * SEq_1;
|
||
|
float halfSEq_2 = 0.5f * SEq_2;
|
||
|
float halfSEq_3 = 0.5f * SEq_3;
|
||
|
float halfSEq_4 = 0.5f * SEq_4;
|
||
|
float twoSEq_1 = 2.0f * SEq_1;
|
||
|
float twoSEq_2 = 2.0f * SEq_2;
|
||
|
float twoSEq_3 = 2.0f * SEq_3;
|
||
|
|
||
|
// estimated direction of the gyroscope error (radians)
|
||
|
Vector3f w_err;
|
||
|
|
||
|
// normalise accelerometer vector
|
||
|
accel.normalize();
|
||
|
|
||
|
// Compute the objective function and Jacobian
|
||
|
f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - accel.x;
|
||
|
f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - accel.y;
|
||
|
f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - accel.z;
|
||
|
J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication
|
||
|
J_12or23 = 2.0f * SEq_4;
|
||
|
J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication
|
||
|
J_14or21 = twoSEq_2;
|
||
|
J_32 = 2.0f * J_14or21; // negated in matrix multiplication
|
||
|
J_33 = 2.0f * J_11or24; // negated in matrix multiplication
|
||
|
|
||
|
// Compute the gradient (matrix multiplication)
|
||
|
SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1;
|
||
|
SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3;
|
||
|
SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1;
|
||
|
SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2;
|
||
|
|
||
|
// Normalise the gradient
|
||
|
norm = 1.0/sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4);
|
||
|
if (!isinf(norm)) {
|
||
|
SEqHatDot_1 *= norm;
|
||
|
SEqHatDot_2 *= norm;
|
||
|
SEqHatDot_3 *= norm;
|
||
|
SEqHatDot_4 *= norm;
|
||
|
}
|
||
|
|
||
|
// Compute the quaternion derrivative measured by gyroscopes
|
||
|
SEqDot_omega_1 = -halfSEq_2 * gyro.x - halfSEq_3 * gyro.y - halfSEq_4 * gyro.z;
|
||
|
SEqDot_omega_2 = halfSEq_1 * gyro.x + halfSEq_3 * gyro.z - halfSEq_4 * gyro.y;
|
||
|
SEqDot_omega_3 = halfSEq_1 * gyro.y - halfSEq_2 * gyro.z + halfSEq_4 * gyro.x;
|
||
|
SEqDot_omega_4 = halfSEq_1 * gyro.z + halfSEq_2 * gyro.y - halfSEq_3 * gyro.x;
|
||
|
|
||
|
// Compute then integrate the estimated quaternion derrivative
|
||
|
SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat;
|
||
|
SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat;
|
||
|
SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat;
|
||
|
SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat;
|
||
|
|
||
|
// Normalise quaternion
|
||
|
norm = 1.0/sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4);
|
||
|
if (!isinf(norm)) {
|
||
|
SEq_1 *= norm;
|
||
|
SEq_2 *= norm;
|
||
|
SEq_3 *= norm;
|
||
|
SEq_4 *= norm;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Function to compute one quaternion iteration including magnetometer
|
||
|
void AP_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag)
|
||
|
{
|
||
|
// local system variables
|
||
|
float norm; // vector norm
|
||
|
float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion rate from gyroscopes elements
|
||
|
float f_1, f_2, f_3, f_4, f_5, f_6; // objective function elements
|
||
|
float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33, // objective function Jacobian elements
|
||
|
J_41, J_42, J_43, J_44, J_51, J_52, J_53, J_54, J_61, J_62, J_63, J_64; //
|
||
|
float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error
|
||
|
|
||
|
// computed flux in the earth frame
|
||
|
Vector3f flux;
|
||
|
|
||
|
// estimated direction of the gyroscope error (radians)
|
||
|
Vector3f w_err;
|
||
|
|
||
|
// normalise accelerometer vector
|
||
|
accel.normalize();
|
||
|
|
||
|
// normalise the magnetometer measurement
|
||
|
mag.normalize();
|
||
|
|
||
|
// auxiliary variables to avoid repeated calculations
|
||
|
float halfSEq_1 = 0.5f * SEq_1;
|
||
|
float halfSEq_2 = 0.5f * SEq_2;
|
||
|
float halfSEq_3 = 0.5f * SEq_3;
|
||
|
float halfSEq_4 = 0.5f * SEq_4;
|
||
|
float twoSEq_1 = 2.0f * SEq_1;
|
||
|
float twoSEq_2 = 2.0f * SEq_2;
|
||
|
float twoSEq_3 = 2.0f * SEq_3;
|
||
|
float twoSEq_4 = 2.0f * SEq_4;
|
||
|
float twob_x = 2.0f * b_x;
|
||
|
float twob_z = 2.0f * b_z;
|
||
|
float twob_xSEq_1 = 2.0f * b_x * SEq_1;
|
||
|
float twob_xSEq_2 = 2.0f * b_x * SEq_2;
|
||
|
float twob_xSEq_3 = 2.0f * b_x * SEq_3;
|
||
|
float twob_xSEq_4 = 2.0f * b_x * SEq_4;
|
||
|
float twob_zSEq_1 = 2.0f * b_z * SEq_1;
|
||
|
float twob_zSEq_2 = 2.0f * b_z * SEq_2;
|
||
|
float twob_zSEq_3 = 2.0f * b_z * SEq_3;
|
||
|
float twob_zSEq_4 = 2.0f * b_z * SEq_4;
|
||
|
float SEq_1SEq_2;
|
||
|
float SEq_1SEq_3 = SEq_1 * SEq_3;
|
||
|
float SEq_1SEq_4;
|
||
|
float SEq_2SEq_3;
|
||
|
float SEq_2SEq_4 = SEq_2 * SEq_4;
|
||
|
float SEq_3SEq_4;
|
||
|
Vector3f twom = mag * 2.0;
|
||
|
|
||
|
// compute the objective function and Jacobian
|
||
|
f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - accel.x;
|
||
|
f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - accel.y;
|
||
|
f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - accel.z;
|
||
|
f_4 = twob_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twob_z * (SEq_2SEq_4 - SEq_1SEq_3) - mag.x;
|
||
|
f_5 = twob_x * (SEq_2 * SEq_3 - SEq_1 * SEq_4) + twob_z * (SEq_1 * SEq_2 + SEq_3 * SEq_4) - mag.y;
|
||
|
f_6 = twob_x * (SEq_1SEq_3 + SEq_2SEq_4) + twob_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3) - mag.z;
|
||
|
J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication
|
||
|
J_12or23 = 2.0f * SEq_4;
|
||
|
J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication
|
||
|
J_14or21 = twoSEq_2;
|
||
|
J_32 = 2.0f * J_14or21; // negated in matrix multiplication
|
||
|
J_33 = 2.0f * J_11or24; // negated in matrix multiplication
|
||
|
J_41 = twob_zSEq_3; // negated in matrix multiplication
|
||
|
J_42 = twob_zSEq_4;
|
||
|
J_43 = 2.0f * twob_xSEq_3 + twob_zSEq_1; // negated in matrix multiplication
|
||
|
J_44 = 2.0f * twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication
|
||
|
J_51 = twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication
|
||
|
J_52 = twob_xSEq_3 + twob_zSEq_1;
|
||
|
J_53 = twob_xSEq_2 + twob_zSEq_4;
|
||
|
J_54 = twob_xSEq_1 - twob_zSEq_3; // negated in matrix multiplication
|
||
|
J_61 = twob_xSEq_3;
|
||
|
J_62 = twob_xSEq_4 - 2.0f * twob_zSEq_2;
|
||
|
J_63 = twob_xSEq_1 - 2.0f * twob_zSEq_3;
|
||
|
J_64 = twob_xSEq_2;
|
||
|
|
||
|
// compute the gradient (matrix multiplication)
|
||
|
SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1 - J_41 * f_4 - J_51 * f_5 + J_61 * f_6;
|
||
|
SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3 + J_42 * f_4 + J_52 * f_5 + J_62 * f_6;
|
||
|
SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1 - J_43 * f_4 + J_53 * f_5 + J_63 * f_6;
|
||
|
SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2 - J_44 * f_4 - J_54 * f_5 + J_64 * f_6;
|
||
|
|
||
|
// normalise the gradient to estimate direction of the gyroscope error
|
||
|
norm = 1.0 / sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4);
|
||
|
SEqHatDot_1 *= norm;
|
||
|
SEqHatDot_2 *= norm;
|
||
|
SEqHatDot_3 *= norm;
|
||
|
SEqHatDot_4 *= norm;
|
||
|
|
||
|
// compute angular estimated direction of the gyroscope error
|
||
|
w_err.x = twoSEq_1 * SEqHatDot_2 - twoSEq_2 * SEqHatDot_1 - twoSEq_3 * SEqHatDot_4 + twoSEq_4 * SEqHatDot_3;
|
||
|
w_err.y = twoSEq_1 * SEqHatDot_3 + twoSEq_2 * SEqHatDot_4 - twoSEq_3 * SEqHatDot_1 - twoSEq_4 * SEqHatDot_2;
|
||
|
w_err.z = twoSEq_1 * SEqHatDot_4 - twoSEq_2 * SEqHatDot_3 + twoSEq_3 * SEqHatDot_2 - twoSEq_4 * SEqHatDot_1;
|
||
|
|
||
|
// compute and remove the gyroscope baises
|
||
|
gyro_bias += w_err * (deltat * zeta);
|
||
|
gyro -= gyro_bias;
|
||
|
|
||
|
// compute the quaternion rate measured by gyroscopes
|
||
|
SEqDot_omega_1 = -halfSEq_2 * gyro.x - halfSEq_3 * gyro.y - halfSEq_4 * gyro.z;
|
||
|
SEqDot_omega_2 = halfSEq_1 * gyro.x + halfSEq_3 * gyro.z - halfSEq_4 * gyro.y;
|
||
|
SEqDot_omega_3 = halfSEq_1 * gyro.y - halfSEq_2 * gyro.z + halfSEq_4 * gyro.x;
|
||
|
SEqDot_omega_4 = halfSEq_1 * gyro.z + halfSEq_2 * gyro.y - halfSEq_3 * gyro.x;
|
||
|
|
||
|
// compute then integrate the estimated quaternion rate
|
||
|
SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat;
|
||
|
SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat;
|
||
|
SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat;
|
||
|
SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat;
|
||
|
|
||
|
// normalise quaternion
|
||
|
norm = 1.0/sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4);
|
||
|
if (!isinf(norm)) {
|
||
|
SEq_1 *= norm;
|
||
|
SEq_2 *= norm;
|
||
|
SEq_3 *= norm;
|
||
|
SEq_4 *= norm;
|
||
|
}
|
||
|
|
||
|
// compute flux in the earth frame
|
||
|
// recompute axulirary variables
|
||
|
SEq_1SEq_2 = SEq_1 * SEq_2;
|
||
|
SEq_1SEq_3 = SEq_1 * SEq_3;
|
||
|
SEq_1SEq_4 = SEq_1 * SEq_4;
|
||
|
SEq_3SEq_4 = SEq_3 * SEq_4;
|
||
|
SEq_2SEq_3 = SEq_2 * SEq_3;
|
||
|
SEq_2SEq_4 = SEq_2 * SEq_4;
|
||
|
flux.x = twom.x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twom.y * (SEq_2SEq_3 - SEq_1SEq_4) + twom.z * (SEq_2SEq_4 + SEq_1SEq_3);
|
||
|
flux.y = twom.x * (SEq_2SEq_3 + SEq_1SEq_4) + twom.y * (0.5f - SEq_2 * SEq_2 - SEq_4 * SEq_4) + twom.z * (SEq_3SEq_4 - SEq_1SEq_2);
|
||
|
flux.z = twom.x * (SEq_2SEq_4 - SEq_1SEq_3) + twom.y * (SEq_3SEq_4 + SEq_1SEq_2) + twom.z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3);
|
||
|
|
||
|
// normalise the flux vector to have only components in the x and z
|
||
|
b_x = sqrt((flux.x * flux.x) + (flux.y * flux.y));
|
||
|
b_z = flux.z;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Function to compute one quaternion iteration
|
||
|
void AP_Quaternion::update(float deltat)
|
||
|
{
|
||
|
Vector3f gyro, accel;
|
||
|
|
||
|
_imu->update();
|
||
|
|
||
|
// get current IMU state
|
||
|
gyro = _imu->get_gyro();
|
||
|
gyro.x = -gyro.x;
|
||
|
gyro.y = -gyro.y;
|
||
|
|
||
|
accel = _imu->get_accel();
|
||
|
accel.z = -accel.z;
|
||
|
|
||
|
if (_compass == NULL) {
|
||
|
update_IMU(deltat, gyro, accel);
|
||
|
} else {
|
||
|
Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, - _compass->mag_z);
|
||
|
update_MARG(deltat, gyro, accel, mag);
|
||
|
}
|
||
|
|
||
|
// compute the Eulers
|
||
|
float test = (SEq_1*SEq_3 - SEq_4*SEq_2);
|
||
|
const float singularity = 0.499; // 86.3 degrees?
|
||
|
if (test > singularity) {
|
||
|
// singularity at south pole
|
||
|
// this one is ok..
|
||
|
yaw = 2.0 * atan2(SEq_4, SEq_1);
|
||
|
pitch = ToRad(-90.0);
|
||
|
roll = 0.0;
|
||
|
} else if (test < -singularity) {
|
||
|
// singularity at north pole
|
||
|
// this one is invalid :( .. fix it.
|
||
|
yaw = -2.0 * atan2(SEq_4, SEq_1);
|
||
|
pitch = ToRad(90.0);
|
||
|
roll = 0.0;
|
||
|
} else {
|
||
|
roll = -(atan2(2.0*(SEq_1*SEq_2 + SEq_3*SEq_4),
|
||
|
1 - 2.0*(SEq_2*SEq_2 + SEq_3*SEq_3)));
|
||
|
pitch = -safe_asin(2.0*test);
|
||
|
yaw = atan2(2.0*(SEq_1*SEq_4 + SEq_2*SEq_3),
|
||
|
1 - 2.0*(SEq_3*SEq_3 + SEq_4*SEq_4));
|
||
|
}
|
||
|
|
||
|
// and integer Eulers
|
||
|
roll_sensor = 100 * ToDeg(roll);
|
||
|
pitch_sensor = 100 * ToDeg(pitch);
|
||
|
yaw_sensor = 100 * ToDeg(yaw);
|
||
|
if (yaw_sensor < 0) {
|
||
|
yaw_sensor += 36000;
|
||
|
}
|
||
|
}
|