ardupilot/libraries/AP_Compass/AP_Compass_DroneCAN.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

242 lines
8.9 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
2023-04-08 00:55:40 -03:00
#include "AP_Compass_DroneCAN.h"
#if AP_COMPASS_DRONECAN_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_CANManager/AP_CANManager.h>
#include <AP_DroneCAN/AP_DroneCAN.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_Logger/AP_Logger.h>
#include <SITL/SITL.h>
extern const AP_HAL::HAL& hal;
#define LOG_TAG "COMPASS"
AP_Compass_DroneCAN::DetectedModules AP_Compass_DroneCAN::_detected_modules[];
HAL_Semaphore AP_Compass_DroneCAN::_sem_registry;
AP_Compass_DroneCAN::AP_Compass_DroneCAN(AP_DroneCAN* ap_dronecan, uint32_t devid) :
_devid(devid)
{
}
void AP_Compass_DroneCAN::subscribe_msgs(AP_DroneCAN* ap_dronecan)
{
if (ap_dronecan == nullptr) {
return;
}
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_magnetic_field, ap_dronecan->get_driver_index()) == nullptr) {
AP_BoardConfig::allocation_error("mag_sub");
}
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_magnetic_field_2, ap_dronecan->get_driver_index()) == nullptr) {
AP_BoardConfig::allocation_error("mag2_sub");
}
#if AP_COMPASS_DRONECAN_HIRES_ENABLED
if (Canard::allocate_sub_arg_callback(ap_dronecan, &handle_magnetic_field_hires, ap_dronecan->get_driver_index()) == nullptr) {
AP_BoardConfig::allocation_error("mag3_sub");
}
#endif
}
AP_Compass_Backend* AP_Compass_DroneCAN::probe(uint8_t index)
{
AP_Compass_DroneCAN* driver = nullptr;
if (!_detected_modules[index].driver && _detected_modules[index].ap_dronecan) {
WITH_SEMAPHORE(_sem_registry);
// Register new Compass mode to a backend
driver = NEW_NOTHROW AP_Compass_DroneCAN(_detected_modules[index].ap_dronecan, _detected_modules[index].devid);
if (driver) {
if (!driver->init()) {
delete driver;
return nullptr;
}
_detected_modules[index].driver = driver;
AP::can().log_text(AP_CANManager::LOG_INFO,
LOG_TAG,
"Found Mag Node %d on Bus %d Sensor ID %d\n",
_detected_modules[index].node_id,
_detected_modules[index].ap_dronecan->get_driver_index(),
_detected_modules[index].sensor_id);
#if AP_TEST_DRONECAN_DRIVERS
// Scroll through the registered compasses, and set the offsets
if (driver->_compass.get_offsets(index).is_zero()) {
driver->_compass.set_offsets(index, AP::sitl()->mag_ofs[index]);
}
// we want to simulate a calibrated compass by default, so set
// scale to 1
AP_Param::set_default_by_name("COMPASS_SCALE", 1);
AP_Param::set_default_by_name("COMPASS_SCALE2", 1);
AP_Param::set_default_by_name("COMPASS_SCALE3", 1);
driver->save_dev_id(index);
driver->set_rotation(index, ROTATION_NONE);
// make first compass external
driver->set_external(index, true);
#endif
}
}
return driver;
}
bool AP_Compass_DroneCAN::init()
{
// Adding 1 is necessary to allow backward compatibility, where this field was set as 1 by default
if (!register_compass(_devid, _instance)) {
return false;
}
set_dev_id(_instance, _devid);
set_external(_instance, true);
AP::can().log_text(AP_CANManager::LOG_INFO, LOG_TAG, "AP_Compass_DroneCAN loaded\n\r");
return true;
}
AP_Compass_DroneCAN* AP_Compass_DroneCAN::get_dronecan_backend(AP_DroneCAN* ap_dronecan, uint8_t node_id, uint8_t sensor_id)
{
if (ap_dronecan == nullptr) {
return nullptr;
}
for (uint8_t i=0; i<COMPASS_MAX_BACKEND; i++) {
if (_detected_modules[i].driver &&
_detected_modules[i].ap_dronecan == ap_dronecan &&
_detected_modules[i].node_id == node_id &&
_detected_modules[i].sensor_id == sensor_id) {
return _detected_modules[i].driver;
}
}
bool already_detected = false;
// Check if there's an empty spot for possible registration
for (uint8_t i = 0; i < COMPASS_MAX_BACKEND; i++) {
if (_detected_modules[i].ap_dronecan == ap_dronecan &&
_detected_modules[i].node_id == node_id &&
_detected_modules[i].sensor_id == sensor_id) {
// Already Detected
already_detected = true;
break;
}
}
if (!already_detected) {
for (uint8_t i = 0; i < COMPASS_MAX_BACKEND; i++) {
if (nullptr == _detected_modules[i].ap_dronecan) {
_detected_modules[i].ap_dronecan = ap_dronecan;
_detected_modules[i].node_id = node_id;
_detected_modules[i].sensor_id = sensor_id;
_detected_modules[i].devid = AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_UAVCAN,
ap_dronecan->get_driver_index(),
node_id,
sensor_id + 1); // we use sensor_id as devtype
break;
}
}
}
struct DetectedModules tempslot;
// Sort based on the node_id, larger values first
// we do this, so that we have repeatable compass
// registration, especially in cases of extraneous
// CAN compass is connected.
for (uint8_t i = 1; i < COMPASS_MAX_BACKEND; i++) {
for (uint8_t j = i; j > 0; j--) {
if (_detected_modules[j].node_id > _detected_modules[j-1].node_id) {
tempslot = _detected_modules[j];
_detected_modules[j] = _detected_modules[j-1];
_detected_modules[j-1] = tempslot;
}
}
}
return nullptr;
}
void AP_Compass_DroneCAN::handle_mag_msg(const Vector3f &mag)
{
Vector3f raw_field = mag * 1000.0;
accumulate_sample(raw_field, _instance);
}
void AP_Compass_DroneCAN::handle_magnetic_field(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_ahrs_MagneticFieldStrength& msg)
{
WITH_SEMAPHORE(_sem_registry);
Vector3f mag_vector;
AP_Compass_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, 0);
if (driver != nullptr) {
mag_vector[0] = msg.magnetic_field_ga[0];
mag_vector[1] = msg.magnetic_field_ga[1];
mag_vector[2] = msg.magnetic_field_ga[2];
driver->handle_mag_msg(mag_vector);
}
}
void AP_Compass_DroneCAN::handle_magnetic_field_2(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer, const uavcan_equipment_ahrs_MagneticFieldStrength2 &msg)
{
WITH_SEMAPHORE(_sem_registry);
Vector3f mag_vector;
uint8_t sensor_id = msg.sensor_id;
AP_Compass_DroneCAN* driver = get_dronecan_backend(ap_dronecan, transfer.source_node_id, sensor_id);
if (driver != nullptr) {
mag_vector[0] = msg.magnetic_field_ga[0];
mag_vector[1] = msg.magnetic_field_ga[1];
mag_vector[2] = msg.magnetic_field_ga[2];
driver->handle_mag_msg(mag_vector);
}
}
#if AP_COMPASS_DRONECAN_HIRES_ENABLED
/*
just log hires magnetic field data for magnetic surveying
*/
void AP_Compass_DroneCAN::handle_magnetic_field_hires(AP_DroneCAN *ap_dronecan, const CanardRxTransfer& transfer,
const dronecan_sensors_magnetometer_MagneticFieldStrengthHiRes &msg)
{
// @LoggerMessage: MAGH
// @Description: Magnetometer high resolution data
// @Field: TimeUS: Time since system startup
// @Field: Node: CAN node
// @Field: Sensor: sensor ID on node
// @Field: Bus: CAN bus
// @Field: Mx: X axis field
// @Field: My: y axis field
// @Field: Mz: z axis field
// just log it for now
AP::logger().WriteStreaming("MAGH", "TimeUS,Node,Sensor,Bus,Mx,My,Mz", "s#-----", "F-----", "QBBBfff",
transfer.timestamp_usec,
transfer.source_node_id,
ap_dronecan->get_driver_index(),
msg.sensor_id,
msg.magnetic_field_ga[0]*1000,
msg.magnetic_field_ga[1]*1000,
msg.magnetic_field_ga[2]*1000);
}
#endif
void AP_Compass_DroneCAN::read(void)
{
drain_accumulated_samples(_instance);
}
#endif // AP_COMPASS_DRONECAN_ENABLED