5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-22 08:38:36 -04:00
ardupilot/libraries/AC_PID/AC_PID.cpp

213 lines
5.0 KiB
C++
Raw Normal View History

/// @file AC_PID.cpp
/// @brief Generic PID algorithm
#include <AP_Math/AP_Math.h>
#include "AC_PID.h"
const AP_Param::GroupInfo AC_PID::var_info[] = {
// @Param: P
// @DisplayName: PID Proportional Gain
// @Description: P Gain which produces an output value that is proportional to the current error value
2012-08-17 02:37:26 -03:00
AP_GROUPINFO("P", 0, AC_PID, _kp, 0),
// @Param: I
// @DisplayName: PID Integral Gain
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
2012-08-17 02:37:26 -03:00
AP_GROUPINFO("I", 1, AC_PID, _ki, 0),
// @Param: D
// @DisplayName: PID Derivative Gain
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
2012-08-17 02:37:26 -03:00
AP_GROUPINFO("D", 2, AC_PID, _kd, 0),
// 3 was for uint16 IMAX
// 4 is used by TradHeli for FF
// @Param: IMAX
// @DisplayName: PID Integral Maximum
// @Description: The maximum/minimum value that the I term can output
AP_GROUPINFO("IMAX", 5, AC_PID, _imax, 0),
2016-02-15 01:47:20 -04:00
// @Param: FILT
// @DisplayName: PID Input filter frequency in Hz
// @Description: Input filter frequency in Hz
2016-02-17 22:10:53 -04:00
// @Units: Hz
2016-02-15 01:47:20 -04:00
AP_GROUPINFO("FILT", 6, AC_PID, _filt_hz, AC_PID_FILT_HZ_DEFAULT),
2012-08-17 02:37:26 -03:00
AP_GROUPEND
2012-02-12 07:25:50 -04:00
};
// Constructor
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float dt) :
_dt(dt),
_integrator(0.0f),
_input(0.0f),
_derivative(0.0f)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
_kp = initial_p;
_ki = initial_i;
_kd = initial_d;
2015-05-08 15:42:13 -03:00
_imax = fabsf(initial_imax);
filt_hz(initial_filt_hz);
// reset input filter to first value received
_flags._reset_filter = true;
memset(&_pid_info, 0, sizeof(_pid_info));
}
// set_dt - set time step in seconds
void AC_PID::set_dt(float dt)
{
// set dt and calculate the input filter alpha
_dt = dt;
}
// filt_hz - set input filter hz
void AC_PID::filt_hz(float hz)
{
2015-05-08 15:42:13 -03:00
_filt_hz.set(fabsf(hz));
// sanity check _filt_hz
_filt_hz = MAX(_filt_hz, AC_PID_FILT_HZ_MIN);
}
// set_input_filter_all - set input to PID controller
// input is filtered before the PID controllers are run
// this should be called before any other calls to get_p, get_i or get_d
void AC_PID::set_input_filter_all(float input)
{
// don't process inf or NaN
if (!isfinite(input)) {
return;
}
2015-03-29 07:02:46 -03:00
// reset input filter to value received
if (_flags._reset_filter) {
_flags._reset_filter = false;
_input = input;
_derivative = 0.0f;
}
// update filter and calculate derivative
float input_filt_change = get_filt_alpha() * (input - _input);
_input = _input + input_filt_change;
if (_dt > 0.0f) {
_derivative = input_filt_change / _dt;
}
}
// set_input_filter_d - set input to PID controller
// only input to the D portion of the controller is filtered
// this should be called before any other calls to get_p, get_i or get_d
void AC_PID::set_input_filter_d(float input)
{
// don't process inf or NaN
if (!isfinite(input)) {
return;
}
// reset input filter to value received
if (_flags._reset_filter) {
_flags._reset_filter = false;
_derivative = 0.0f;
}
// update filter and calculate derivative
if (_dt > 0.0f) {
float derivative = (input - _input) / _dt;
_derivative = _derivative + get_filt_alpha() * (derivative-_derivative);
}
_input = input;
}
float AC_PID::get_p()
{
_pid_info.P = (_input * _kp);
return _pid_info.P;
}
float AC_PID::get_i()
{
2015-05-04 23:34:48 -03:00
if(!is_zero(_ki) && !is_zero(_dt)) {
_integrator += ((float)_input * _ki) * _dt;
2012-08-17 02:37:26 -03:00
if (_integrator < -_imax) {
_integrator = -_imax;
} else if (_integrator > _imax) {
_integrator = _imax;
}
_pid_info.I = _integrator;
2012-08-17 02:37:26 -03:00
return _integrator;
}
return 0;
}
float AC_PID::get_d()
{
// derivative component
_pid_info.D = (_kd * _derivative);
return _pid_info.D;
}
float AC_PID::get_pi()
{
return get_p() + get_i();
}
float AC_PID::get_pid()
{
return get_p() + get_i() + get_d();
}
2014-02-14 02:52:24 -04:00
void AC_PID::reset_I()
{
2012-08-17 02:37:26 -03:00
_integrator = 0;
}
2014-02-14 02:52:24 -04:00
void AC_PID::load_gains()
{
2012-08-17 02:37:26 -03:00
_kp.load();
_ki.load();
_kd.load();
_imax.load();
2015-05-08 15:42:13 -03:00
_imax = fabsf(_imax);
_filt_hz.load();
}
// save_gains - save gains to eeprom
2014-02-14 02:52:24 -04:00
void AC_PID::save_gains()
{
2012-08-17 02:37:26 -03:00
_kp.save();
_ki.save();
_kd.save();
_imax.save();
_filt_hz.save();
}
/// Overload the function call operator to permit easy initialisation
void AC_PID::operator() (float p, float i, float d, float imaxval, float input_filt_hz, float dt)
{
_kp = p;
_ki = i;
_kd = d;
2015-05-08 15:42:13 -03:00
_imax = fabsf(imaxval);
_filt_hz = input_filt_hz;
_dt = dt;
}
// calc_filt_alpha - recalculate the input filter alpha
float AC_PID::get_filt_alpha() const
{
2015-05-04 23:34:48 -03:00
if (is_zero(_filt_hz)) {
return 1.0f;
}
// calculate alpha
float rc = 1/(M_2PI*_filt_hz);
return _dt / (_dt + rc);
}