ardupilot/libraries/AP_HAL_Linux/Util.cpp

357 lines
8.0 KiB
C++
Raw Normal View History

#include <errno.h>
#include <fcntl.h>
2014-02-23 20:59:24 -04:00
#include <stdarg.h>
#include <stdio.h>
2014-02-23 20:59:24 -04:00
#include <stdlib.h>
#include <sys/stat.h>
2015-01-19 13:30:18 -04:00
#include <time.h>
#include <unistd.h>
2014-02-23 20:59:24 -04:00
#include <AP_HAL/AP_HAL.h>
2014-02-23 20:59:24 -04:00
#include "Heat_Pwm.h"
#include "ToneAlarm_Disco.h"
2014-02-23 20:59:24 -04:00
#include "Util.h"
2014-02-23 20:59:24 -04:00
using namespace Linux;
extern const AP_HAL::HAL& hal;
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO
ToneAlarm_Disco Util::_toneAlarm;
#else
ToneAlarm Util::_toneAlarm;
#endif
void Util::init(int argc, char * const *argv) {
saved_argc = argc;
saved_argv = argv;
#ifdef HAL_UTILS_HEAT
#if HAL_UTILS_HEAT == HAL_LINUX_HEAT_PWM
_heat = new Linux::HeatPwm(HAL_LINUX_HEAT_PWM_NUM,
HAL_LINUX_HEAT_KP,
HAL_LINUX_HEAT_KI,
HAL_LINUX_HEAT_PERIOD_NS);
#else
#error Unrecognized Heat
#endif // #if
#else
_heat = new Linux::Heat();
#endif // #ifdef
}
// set current IMU temperatue in degrees C
void Util::set_imu_temp(float current)
{
_heat->set_imu_temp(current);
}
// set target IMU temperatue in degrees C
void Util::set_imu_target_temp(int8_t *target)
{
_heat->set_imu_target_temp(target);
}
2014-02-23 20:59:24 -04:00
/**
return commandline arguments, if available
*/
void Util::commandline_arguments(uint8_t &argc, char * const *&argv)
2014-02-23 20:59:24 -04:00
{
argc = saved_argc;
argv = saved_argv;
}
2021-11-22 22:40:39 -04:00
uint64_t Util::get_hw_rtc() const
{
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
const uint64_t seconds = ts.tv_sec;
const uint64_t nanoseconds = ts.tv_nsec;
return (seconds * 1000000ULL + nanoseconds/1000ULL);
}
void Util::set_hw_rtc(uint64_t time_utc_usec)
2015-01-19 13:30:18 -04:00
{
2021-11-22 22:40:39 -04:00
// don't reset the HW clock time on people's laptops.
2015-01-22 00:58:20 -04:00
#if CONFIG_HAL_BOARD_SUBTYPE != HAL_BOARD_SUBTYPE_LINUX_NONE
2021-11-22 22:40:39 -04:00
timespec ts;
ts.tv_sec = time_utc_usec/1000000ULL;
ts.tv_nsec = (time_utc_usec % 1000000ULL) * 1000ULL;
clock_settime(CLOCK_REALTIME, &ts);
#endif
2015-01-19 13:30:18 -04:00
}
bool Util::is_chardev_node(const char *path)
{
struct stat st;
if (!path || lstat(path, &st) < 0) {
return false;
}
return S_ISCHR(st.st_mode);
}
/*
always report 256k of free memory. Using mallinfo() isn't useful as
it only reported the current heap, which auto-expands. What we're
trying to do here is ensure that code which checks for free memory
before allocating objects does allow the allocation
*/
uint32_t Util::available_memory(void)
{
return 256*1024;
}
#ifndef HAL_LINUX_DEFAULT_SYSTEM_ID
#define HAL_LINUX_DEFAULT_SYSTEM_ID "linux-unknown"
#endif
/*
get a (hopefully unique) machine ID
*/
bool Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len)
{
char *cbuf = (char *)buf;
// try first to use machine-id file. Most systems will have this
const char *paths[] = { "/etc/machine-id", "/var/lib/dbus/machine-id" };
for (uint8_t i=0; i<ARRAY_SIZE(paths); i++) {
int fd = open(paths[i], O_RDONLY);
if (fd == -1) {
continue;
}
ssize_t ret = read(fd, buf, len);
close(fd);
if (ret <= 0) {
continue;
}
len = ret;
char *p = strchr(cbuf, '\n');
if (p) {
*p = 0;
}
len = strnlen(cbuf, len);
return true;
}
// fallback to hostname
if (gethostname(cbuf, len) != 0) {
// use a default name so this always succeeds. Without it we can't
// implement some features (such as UAVCAN)
strncpy(cbuf, HAL_LINUX_DEFAULT_SYSTEM_ID, len);
}
len = strnlen(cbuf, len);
return true;
}
/*
as get_system_id_unformatted will already be ascii, we use the same
ID here
*/
bool Util::get_system_id(char buf[50])
{
uint8_t len = 40;
return get_system_id_unformatted((uint8_t *)buf, len);
}
int Util::write_file(const char *path, const char *fmt, ...)
{
errno = 0;
int fd = open(path, O_WRONLY | O_CLOEXEC);
if (fd == -1) {
return -errno;
}
va_list args;
va_start(args, fmt);
int ret = vdprintf(fd, fmt, args);
int errno_bkp = errno;
close(fd);
va_end(args);
if (ret < 1) {
return -errno_bkp;
}
return ret;
}
int Util::read_file(const char *path, const char *fmt, ...)
{
errno = 0;
FILE *file = fopen(path, "re");
if (!file) {
return -errno;
}
va_list args;
va_start(args, fmt);
int ret = vfscanf(file, fmt, args);
int errno_bkp = errno;
fclose(file);
va_end(args);
if (ret < 1) {
return -errno_bkp;
}
return ret;
}
const char *Linux::Util::_hw_names[UTIL_NUM_HARDWARES] = {
[UTIL_HARDWARE_RPI1] = "BCM2708",
[UTIL_HARDWARE_RPI2] = "BCM2709",
[UTIL_HARDWARE_RPI4] = "BCM2711",
[UTIL_HARDWARE_BEBOP] = "Mykonos3 board",
[UTIL_HARDWARE_BEBOP2] = "Milos board",
2016-06-06 19:16:25 -03:00
[UTIL_HARDWARE_DISCO] = "Evinrude board",
};
#define MAX_SIZE_LINE 50
int Util::get_hw_arm32()
{
char buffer[MAX_SIZE_LINE] = { 0 };
FILE *f = fopen("/proc/cpuinfo", "r");
if (f == nullptr) {
return -errno;
}
while (fgets(buffer, MAX_SIZE_LINE, f) != nullptr) {
if (strstr(buffer, "Hardware") == nullptr) {
continue;
}
for (uint8_t i = 0; i < UTIL_NUM_HARDWARES; i++) {
if (strstr(buffer, _hw_names[i]) == nullptr) {
continue;
}
fclose(f);
return i;
}
}
fclose(f);
return -ENOENT;
}
#ifdef ENABLE_HEAP
void *Util::allocate_heap_memory(size_t size)
{
struct heap *new_heap = (struct heap*)malloc(sizeof(struct heap));
if (new_heap != nullptr) {
new_heap->max_heap_size = size;
new_heap->current_heap_usage = 0;
}
return (void *)new_heap;
}
void *Util::heap_realloc(void *h, void *ptr, size_t new_size)
{
if (h == nullptr) {
return nullptr;
}
struct heap *heapp = (struct heap*)h;
// extract appropriate headers
size_t old_size = 0;
heap_allocation_header *old_header = nullptr;
if (ptr != nullptr) {
old_header = ((heap_allocation_header *)ptr) - 1;
old_size = old_header->allocation_size;
}
if ((heapp->current_heap_usage + new_size - old_size) > heapp->max_heap_size) {
// fail the allocation as we don't have the memory. Note that we don't simulate fragmentation
return nullptr;
}
heapp->current_heap_usage -= old_size;
if (new_size == 0) {
free(old_header);
return nullptr;
}
heap_allocation_header *new_header = (heap_allocation_header *)malloc(new_size + sizeof(heap_allocation_header));
if (new_header == nullptr) {
// total failure to allocate, this is very surprising in SITL
return nullptr;
}
heapp->current_heap_usage += new_size;
new_header->allocation_size = new_size;
void *new_mem = new_header + 1;
if (ptr == nullptr) {
return new_mem;
}
memcpy(new_mem, ptr, old_size > new_size ? new_size : old_size);
free(old_header);
return new_mem;
}
#endif // ENABLE_HEAP
/**
* This method will read random values with set size.
*/
bool Util::get_random_vals(uint8_t* data, size_t size)
{
int dev_random = open("/dev/urandom", O_RDONLY);
if (dev_random < 0) {
return false;
}
ssize_t result = read(dev_random, data, size);
if (result < 0) {
close(dev_random);
return false;
}
close(dev_random);
return true;
}
2021-09-17 00:28:40 -03:00
bool Util::parse_cpu_set(const char *str, cpu_set_t *cpu_set) const
2021-09-17 00:28:40 -03:00
{
unsigned long cpu1, cpu2;
char *endptr, sep;
CPU_ZERO(cpu_set);
do {
cpu1 = strtoul(str, &endptr, 10);
if (str == endptr) {
return false;
}
str = endptr + 1;
sep = *endptr;
if (sep == ',' || sep == '\0') {
CPU_SET(cpu1, cpu_set);
continue;
}
if (sep != '-') {
return false;
}
cpu2 = strtoul(str, &endptr, 10);
if (str == endptr) {
return false;
}
str = endptr + 1;
for (; cpu1 <= cpu2; cpu1++) {
CPU_SET(cpu1, cpu_set);
}
} while (*endptr != '\0');
return true;
2021-11-22 22:40:39 -04:00
}