ardupilot/Tools/AntennaTracker/system.pde

267 lines
6.7 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
static void init_tracker()
{
hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE);
// gps port
hal.uartB->begin(38400, 256, 16);
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE
"\n\nFree RAM: %u\n"),
hal.util->available_memory());
// Check the EEPROM format version before loading any parameters from EEPROM
load_parameters();
BoardConfig.init();
// reset the uartA baud rate after parameter load
hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD));
// init baro before we start the GCS, so that the CLI baro test works
barometer.init();
// init the GCS
gcs[0].init(hal.uartA);
// Register mavlink_delay_cb, which will run anytime you have
// more than 5ms remaining in your call to hal.scheduler->delay
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
usb_connected = true;
check_usb_mux();
// we have a 2nd serial port for telemetry
hal.uartC->begin(map_baudrate(g.serial1_baud, SERIAL1_BAUD),
128, SERIAL1_BUFSIZE);
gcs[1].init(hal.uartC);
mavlink_system.sysid = g.sysid_this_mav;
if (g.compass_enabled==true) {
if (!compass.init() || !compass.read()) {
cliSerial->println_P(PSTR("Compass initialisation failed!"));
g.compass_enabled = false;
} else {
ahrs.set_compass(&compass);
}
}
// Do GPS init
g_gps = &g_gps_driver;
// GPS Initialization
g_gps->init(hal.uartB, GPS::GPS_ENGINE_STATIONARY, NULL);
mavlink_system.compid = 4;
mavlink_system.type = MAV_TYPE_ANTENNA_TRACKER;
ahrs.init();
ahrs.set_fly_forward(false);
ins.init(AP_InertialSensor::WARM_START, ins_sample_rate);
ahrs.reset();
init_barometer();
hal.uartA->set_blocking_writes(false);
hal.uartC->set_blocking_writes(false);
// setup antenna control PWM channels
channel_yaw.set_angle(18000); // Yaw is expected to drive antenna azimuth -180-0-180
channel_pitch.set_angle(9000); // Pitch is expected to drive elevation -90-0-90
channel_yaw.output_trim();
channel_pitch.output_trim();
channel_yaw.calc_pwm();
channel_pitch.calc_pwm();
// use given start positions - useful for indoor testing, and
// while waiting for GPS lock
current_loc.lat = g.start_latitude * 1.0e7f;
current_loc.lng = g.start_longitude * 1.0e7f;
// see if EEPROM has a default location as well
get_home_eeprom(current_loc);
gcs_send_text_P(SEVERITY_LOW,PSTR("\nReady to track."));
hal.scheduler->delay(1000); // Why????
set_mode(AUTO); // tracking
if (g.startup_delay > 0) {
// arm servos with trim value to allow them to start up (required
// for some servos)
prepare_servos();
}
}
// Level the tracker by calibrating the INS
// Requires that the tracker be physically 'level' and horizontal
static void calibrate_ins()
{
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move tracker"));
ahrs.init();
ahrs.set_fly_forward(true);
ins.init(AP_InertialSensor::COLD_START, ins_sample_rate);
ins.init_accel();
ahrs.set_trim(Vector3f(0, 0, 0));
ahrs.reset();
init_barometer();
}
// updates the status of the notify objects
// should be called at 50hz
static void update_notify()
{
notify.update();
}
/*
* map from a 8 bit EEPROM baud rate to a real baud rate
*/
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
{
switch (rate) {
case 1: return 1200;
case 2: return 2400;
case 4: return 4800;
case 9: return 9600;
case 19: return 19200;
case 38: return 38400;
case 57: return 57600;
case 111: return 111100;
case 115: return 115200;
}
cliSerial->println_P(PSTR("Invalid baudrate"));
return default_baud;
}
/*
fetch HOME from EEPROM
*/
static bool get_home_eeprom(struct Location &loc)
{
uint16_t mem;
// Find out proper location in memory by using the start_byte position + the index
// --------------------------------------------------------------------------------
if (g.command_total.get() == 0) {
return false;
}
// read WP position
mem = WP_START_BYTE;
loc.options = hal.storage->read_byte(mem);
mem++;
loc.alt = hal.storage->read_dword(mem);
mem += 4;
loc.lat = hal.storage->read_dword(mem);
mem += 4;
loc.lng = hal.storage->read_dword(mem);
return true;
}
static void set_home_eeprom(struct Location temp)
{
uint16_t mem = WP_START_BYTE;
hal.storage->write_byte(mem, temp.options);
mem++;
hal.storage->write_dword(mem, temp.alt);
mem += 4;
hal.storage->write_dword(mem, temp.lat);
mem += 4;
hal.storage->write_dword(mem, temp.lng);
// Now have a home location in EEPROM
g.command_total.set_and_save(1); // At most 1 entry for HOME
}
static void set_home(struct Location temp)
{
if (g.compass_enabled)
compass.set_initial_location(temp.lat, temp.lng);
set_home_eeprom(temp);
current_loc = temp;
}
static void arm_servos()
{
channel_yaw.enable_out();
channel_pitch.enable_out();
}
static void disarm_servos()
{
channel_yaw.disable_out();
channel_pitch.disable_out();
}
/*
setup servos to trim value after initialising
*/
static void prepare_servos()
{
start_time_ms = hal.scheduler->millis();
channel_yaw.radio_out = channel_yaw.radio_trim;
channel_pitch.radio_out = channel_pitch.radio_trim;
channel_yaw.output();
channel_pitch.output();
}
static void set_mode(enum ControlMode mode)
{
if(control_mode == mode) {
// don't switch modes if we are already in the correct mode.
return;
}
control_mode = mode;
switch (control_mode) {
case AUTO:
case MANUAL:
arm_servos();
break;
case STOP:
case INITIALISING:
disarm_servos();
break;
}
}
static void check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == usb_connected) {
return;
}
// the user has switched to/from the telemetry port
usb_connected = usb_check;
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
// the APM2 has a MUX setup where the first serial port switches
// between USB and a TTL serial connection. When on USB we use
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
// at SERIAL1_BAUD.
if (usb_connected) {
hal.uartA->begin(SERIAL0_BAUD);
} else {
hal.uartA->begin(map_baudrate(g.serial1_baud, SERIAL1_BAUD));
}
#endif
}