2013-10-13 04:14:13 -03:00
|
|
|
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
|
|
|
|
static void init_tracker()
|
|
|
|
{
|
|
|
|
hal.uartA->begin(SERIAL0_BAUD, 128, SERIAL_BUFSIZE);
|
|
|
|
|
|
|
|
// gps port
|
|
|
|
hal.uartB->begin(38400, 256, 16);
|
|
|
|
|
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE
|
|
|
|
"\n\nFree RAM: %u\n"),
|
2014-02-18 03:55:32 -04:00
|
|
|
hal.util->available_memory());
|
2013-10-13 04:14:13 -03:00
|
|
|
|
|
|
|
// Check the EEPROM format version before loading any parameters from EEPROM
|
|
|
|
load_parameters();
|
|
|
|
|
2014-03-26 18:06:50 -03:00
|
|
|
BoardConfig.init();
|
|
|
|
|
2013-10-13 04:14:13 -03:00
|
|
|
// reset the uartA baud rate after parameter load
|
|
|
|
hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD));
|
|
|
|
|
|
|
|
// init baro before we start the GCS, so that the CLI baro test works
|
|
|
|
barometer.init();
|
|
|
|
|
|
|
|
// init the GCS
|
2014-03-05 02:38:22 -04:00
|
|
|
gcs[0].init(hal.uartA);
|
|
|
|
|
2013-10-13 04:14:13 -03:00
|
|
|
// Register mavlink_delay_cb, which will run anytime you have
|
|
|
|
// more than 5ms remaining in your call to hal.scheduler->delay
|
|
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
|
|
|
|
|
2014-03-22 05:31:28 -03:00
|
|
|
// we start by assuming USB connected, as we initialed the serial
|
|
|
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
|
|
|
|
usb_connected = true;
|
|
|
|
check_usb_mux();
|
|
|
|
|
2013-10-13 04:14:13 -03:00
|
|
|
// we have a 2nd serial port for telemetry
|
2014-03-05 02:38:22 -04:00
|
|
|
hal.uartC->begin(map_baudrate(g.serial1_baud, SERIAL1_BAUD),
|
|
|
|
128, SERIAL1_BUFSIZE);
|
|
|
|
gcs[1].init(hal.uartC);
|
2013-10-13 04:14:13 -03:00
|
|
|
|
|
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
|
|
|
|
if (g.compass_enabled==true) {
|
|
|
|
if (!compass.init() || !compass.read()) {
|
|
|
|
cliSerial->println_P(PSTR("Compass initialisation failed!"));
|
|
|
|
g.compass_enabled = false;
|
|
|
|
} else {
|
|
|
|
ahrs.set_compass(&compass);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do GPS init
|
|
|
|
g_gps = &g_gps_driver;
|
|
|
|
|
|
|
|
// GPS Initialization
|
2014-03-23 22:04:09 -03:00
|
|
|
g_gps->init(hal.uartB, GPS::GPS_ENGINE_STATIONARY, NULL);
|
2013-10-13 04:14:13 -03:00
|
|
|
|
|
|
|
mavlink_system.compid = 4;
|
|
|
|
mavlink_system.type = MAV_TYPE_ANTENNA_TRACKER;
|
|
|
|
|
|
|
|
ahrs.init();
|
|
|
|
ahrs.set_fly_forward(false);
|
|
|
|
|
|
|
|
ins.init(AP_InertialSensor::WARM_START, ins_sample_rate);
|
|
|
|
ahrs.reset();
|
|
|
|
|
|
|
|
init_barometer();
|
|
|
|
|
|
|
|
hal.uartA->set_blocking_writes(false);
|
|
|
|
hal.uartC->set_blocking_writes(false);
|
|
|
|
|
|
|
|
// setup antenna control PWM channels
|
2014-03-02 03:00:37 -04:00
|
|
|
channel_yaw.set_angle(18000); // Yaw is expected to drive antenna azimuth -180-0-180
|
|
|
|
channel_pitch.set_angle(9000); // Pitch is expected to drive elevation -90-0-90
|
2013-10-13 04:14:13 -03:00
|
|
|
|
|
|
|
channel_yaw.output_trim();
|
|
|
|
channel_pitch.output_trim();
|
|
|
|
|
|
|
|
channel_yaw.calc_pwm();
|
|
|
|
channel_pitch.calc_pwm();
|
|
|
|
|
2014-03-22 05:09:01 -03:00
|
|
|
// use given start positions - useful for indoor testing, and
|
|
|
|
// while waiting for GPS lock
|
|
|
|
current_loc.lat = g.start_latitude * 1.0e7f;
|
|
|
|
current_loc.lng = g.start_longitude * 1.0e7f;
|
2014-03-05 01:47:47 -04:00
|
|
|
|
2014-03-22 05:09:01 -03:00
|
|
|
// see if EEPROM has a default location as well
|
|
|
|
get_home_eeprom(current_loc);
|
2014-03-02 03:00:37 -04:00
|
|
|
|
2013-10-13 04:14:13 -03:00
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("\nReady to track."));
|
2014-03-02 03:00:37 -04:00
|
|
|
hal.scheduler->delay(1000); // Why????
|
2014-03-06 18:13:53 -04:00
|
|
|
|
|
|
|
set_mode(AUTO); // tracking
|
2014-03-22 05:09:01 -03:00
|
|
|
|
|
|
|
if (g.startup_delay > 0) {
|
|
|
|
// arm servos with trim value to allow them to start up (required
|
|
|
|
// for some servos)
|
|
|
|
prepare_servos();
|
|
|
|
}
|
2014-03-02 03:00:37 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
// Level the tracker by calibrating the INS
|
|
|
|
// Requires that the tracker be physically 'level' and horizontal
|
|
|
|
static void calibrate_ins()
|
|
|
|
{
|
|
|
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move tracker"));
|
|
|
|
ahrs.init();
|
|
|
|
ahrs.set_fly_forward(true);
|
|
|
|
ins.init(AP_InertialSensor::COLD_START, ins_sample_rate);
|
|
|
|
ins.init_accel();
|
|
|
|
ahrs.set_trim(Vector3f(0, 0, 0));
|
|
|
|
ahrs.reset();
|
|
|
|
init_barometer();
|
2013-10-13 04:14:13 -03:00
|
|
|
}
|
|
|
|
|
|
|
|
// updates the status of the notify objects
|
|
|
|
// should be called at 50hz
|
|
|
|
static void update_notify()
|
|
|
|
{
|
|
|
|
notify.update();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* map from a 8 bit EEPROM baud rate to a real baud rate
|
|
|
|
*/
|
|
|
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
|
|
|
|
{
|
|
|
|
switch (rate) {
|
|
|
|
case 1: return 1200;
|
|
|
|
case 2: return 2400;
|
|
|
|
case 4: return 4800;
|
|
|
|
case 9: return 9600;
|
|
|
|
case 19: return 19200;
|
|
|
|
case 38: return 38400;
|
|
|
|
case 57: return 57600;
|
|
|
|
case 111: return 111100;
|
|
|
|
case 115: return 115200;
|
|
|
|
}
|
2014-03-05 02:38:22 -04:00
|
|
|
cliSerial->println_P(PSTR("Invalid baudrate"));
|
2013-10-13 04:14:13 -03:00
|
|
|
return default_baud;
|
|
|
|
}
|
|
|
|
|
2014-03-02 03:00:37 -04:00
|
|
|
/*
|
|
|
|
fetch HOME from EEPROM
|
|
|
|
*/
|
2014-03-22 05:09:01 -03:00
|
|
|
static bool get_home_eeprom(struct Location &loc)
|
2014-03-02 03:00:37 -04:00
|
|
|
{
|
|
|
|
uint16_t mem;
|
|
|
|
|
|
|
|
// Find out proper location in memory by using the start_byte position + the index
|
|
|
|
// --------------------------------------------------------------------------------
|
|
|
|
if (g.command_total.get() == 0) {
|
2014-03-22 05:09:01 -03:00
|
|
|
return false;
|
2014-03-02 03:00:37 -04:00
|
|
|
}
|
|
|
|
|
2014-03-22 05:09:01 -03:00
|
|
|
// read WP position
|
|
|
|
mem = WP_START_BYTE;
|
|
|
|
loc.options = hal.storage->read_byte(mem);
|
|
|
|
mem++;
|
|
|
|
|
|
|
|
loc.alt = hal.storage->read_dword(mem);
|
|
|
|
mem += 4;
|
|
|
|
|
|
|
|
loc.lat = hal.storage->read_dword(mem);
|
|
|
|
mem += 4;
|
|
|
|
|
|
|
|
loc.lng = hal.storage->read_dword(mem);
|
|
|
|
|
|
|
|
return true;
|
2014-03-02 03:00:37 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
static void set_home_eeprom(struct Location temp)
|
|
|
|
{
|
|
|
|
uint16_t mem = WP_START_BYTE;
|
|
|
|
|
|
|
|
hal.storage->write_byte(mem, temp.options);
|
|
|
|
mem++;
|
2013-10-13 04:14:13 -03:00
|
|
|
|
2014-03-02 03:00:37 -04:00
|
|
|
hal.storage->write_dword(mem, temp.alt);
|
|
|
|
mem += 4;
|
|
|
|
|
2014-03-18 19:21:19 -03:00
|
|
|
hal.storage->write_dword(mem, temp.lat);
|
2014-03-02 03:00:37 -04:00
|
|
|
mem += 4;
|
2014-03-18 19:21:19 -03:00
|
|
|
|
2014-03-02 03:00:37 -04:00
|
|
|
hal.storage->write_dword(mem, temp.lng);
|
|
|
|
|
|
|
|
// Now have a home location in EEPROM
|
|
|
|
g.command_total.set_and_save(1); // At most 1 entry for HOME
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_home(struct Location temp)
|
|
|
|
{
|
|
|
|
if (g.compass_enabled)
|
|
|
|
compass.set_initial_location(temp.lat, temp.lng);
|
|
|
|
set_home_eeprom(temp);
|
2014-03-05 01:47:47 -04:00
|
|
|
current_loc = temp;
|
2014-03-02 03:00:37 -04:00
|
|
|
}
|
2014-03-03 20:37:15 -04:00
|
|
|
|
|
|
|
static void arm_servos()
|
2014-03-22 05:09:01 -03:00
|
|
|
{
|
2014-03-03 20:37:15 -04:00
|
|
|
channel_yaw.enable_out();
|
|
|
|
channel_pitch.enable_out();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void disarm_servos()
|
|
|
|
{
|
|
|
|
channel_yaw.disable_out();
|
|
|
|
channel_pitch.disable_out();
|
|
|
|
}
|
2014-03-06 18:13:53 -04:00
|
|
|
|
2014-03-22 05:09:01 -03:00
|
|
|
/*
|
|
|
|
setup servos to trim value after initialising
|
|
|
|
*/
|
|
|
|
static void prepare_servos()
|
|
|
|
{
|
|
|
|
start_time_ms = hal.scheduler->millis();
|
|
|
|
channel_yaw.radio_out = channel_yaw.radio_trim;
|
|
|
|
channel_pitch.radio_out = channel_pitch.radio_trim;
|
|
|
|
channel_yaw.output();
|
|
|
|
channel_pitch.output();
|
|
|
|
}
|
|
|
|
|
2014-03-06 18:13:53 -04:00
|
|
|
static void set_mode(enum ControlMode mode)
|
|
|
|
{
|
|
|
|
if(control_mode == mode) {
|
|
|
|
// don't switch modes if we are already in the correct mode.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
control_mode = mode;
|
2014-03-22 05:09:01 -03:00
|
|
|
|
|
|
|
switch (control_mode) {
|
|
|
|
case AUTO:
|
|
|
|
case MANUAL:
|
|
|
|
arm_servos();
|
|
|
|
break;
|
|
|
|
|
|
|
|
case STOP:
|
|
|
|
case INITIALISING:
|
|
|
|
disarm_servos();
|
|
|
|
break;
|
|
|
|
}
|
2014-03-06 18:13:53 -04:00
|
|
|
}
|
|
|
|
|
2014-03-22 05:31:28 -03:00
|
|
|
static void check_usb_mux(void)
|
|
|
|
{
|
|
|
|
bool usb_check = hal.gpio->usb_connected();
|
|
|
|
if (usb_check == usb_connected) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// the user has switched to/from the telemetry port
|
|
|
|
usb_connected = usb_check;
|
|
|
|
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
|
|
// the APM2 has a MUX setup where the first serial port switches
|
|
|
|
// between USB and a TTL serial connection. When on USB we use
|
|
|
|
// SERIAL0_BAUD, but when connected as a TTL serial port we run it
|
|
|
|
// at SERIAL1_BAUD.
|
|
|
|
if (usb_connected) {
|
|
|
|
hal.uartA->begin(SERIAL0_BAUD);
|
|
|
|
} else {
|
|
|
|
hal.uartA->begin(map_baudrate(g.serial1_baud, SERIAL1_BAUD));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|