2018-02-09 04:10:30 -04:00
/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
/*
copied from AP_InertialSensor_Invensense , removed aux bus and FIFO usage
this driver can be common Invensense driver for boards with connected DataReady pin if HAL API will be extended
to support IO_Complete callbacks
driver for all supported Invensense IMUs , including MPU6000 , MPU9250
ICM - 20608 and ICM - 20602
*/
# include <AP_HAL/AP_HAL.h>
# if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT && defined(INVENSENSE_DRDY_PIN)
# include <assert.h>
# include <utility>
# include <stdio.h>
# include <AP_HAL/Util.h>
# include <AP_HAL_F4Light/GPIO.h>
# include <AP_HAL_F4Light/Scheduler.h>
# include <AP_HAL_F4Light/SPIDevice.h>
# include <AP_Param_Helper/AP_Param_Helper.h>
# include "AP_InertialSensor_Revo.h"
2018-02-09 17:47:43 -04:00
# include "AP_InertialSensor_Invensense_registers.h"
2018-02-09 04:10:30 -04:00
extern const AP_HAL : : HAL & hal ;
# define debug(fmt, args ...) do {printf("MPU: " fmt "\n", ## args); } while(0)
/*
EXT_SYNC allows for frame synchronisation with an external device
such as a camera . When enabled the LSB of AccelZ holds the FSYNC bit
*/
# ifndef INVENSENSE_EXT_SYNC_ENABLE
# define INVENSENSE_EXT_SYNC_ENABLE 0
# endif
# define MPU_SAMPLE_SIZE 14
# define MPU_FIFO_DOWNSAMPLE_COUNT 8
# define MPU_FIFO_BUFFER_LEN 64 // ms of samples
# define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
# define uint16_val(v, idx)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])
/*
* RM - MPU - 6000 A - 00. pdf , page 33 , section 4.25 lists LSB sensitivity of
* gyro as 16.4 LSB / DPS at scale factor of + / - 2000 dps ( FS_SEL = = 3 )
*/
static const float GYRO_SCALE = ( 0.0174532f / 16.4f ) ;
# ifdef MPU_DEBUG_LOG
mpu_log_item AP_InertialSensor_Revo : : mpu_log [ MPU_LOG_SIZE ] IN_CCM ;
uint16_t AP_InertialSensor_Revo : : mpu_log_ptr = 0 ;
# endif
/*
* RM - MPU - 6000 A - 00. pdf , page 31 , section 4.23 lists LSB sensitivity of
* accel as 4096 LSB / mg at scale factor of + / - 8 g ( AFS_SEL = = 2 )
*
* See note below about accel scaling of engineering sample MPU6k
* variants however
*/
AP_InertialSensor_Revo : : AP_InertialSensor_Revo ( AP_InertialSensor & imu ,
AP_HAL : : OwnPtr < AP_HAL : : Device > dev ,
enum Rotation rotation )
: AP_InertialSensor_Backend ( imu )
, _temp_filter ( 1000 , 1 )
, _rotation ( rotation )
, _dev ( std : : move ( dev ) )
, nodata_count ( 0 )
, accel_len ( 0 )
{
}
AP_InertialSensor_Revo : : ~ AP_InertialSensor_Revo ( )
{
if ( _fifo_buffer ! = nullptr ) {
hal . util - > free_type ( _fifo_buffer , MPU_FIFO_BUFFER_LEN * MPU_SAMPLE_SIZE , AP_HAL : : Util : : MEM_DMA_SAFE ) ;
}
}
AP_InertialSensor_Backend * AP_InertialSensor_Revo : : probe ( AP_InertialSensor & imu ,
AP_HAL : : OwnPtr < AP_HAL : : I2CDevice > dev ,
enum Rotation rotation )
{
return nullptr ;
}
AP_InertialSensor_Backend * AP_InertialSensor_Revo : : probe ( AP_InertialSensor & imu ,
AP_HAL : : OwnPtr < AP_HAL : : SPIDevice > dev ,
enum Rotation rotation )
{
if ( ! dev ) {
return nullptr ;
}
AP_InertialSensor_Revo * sensor ;
dev - > set_read_flag ( 0x80 ) ;
sensor = new AP_InertialSensor_Revo ( imu , std : : move ( dev ) , rotation ) ;
if ( ! sensor | | ! sensor - > _init ( ) ) {
delete sensor ;
return nullptr ;
}
if ( sensor - > _mpu_type = = Invensense_MPU9250 ) {
sensor - > _id = HAL_INS_MPU9250_SPI ;
} else if ( sensor - > _mpu_type = = Invensense_MPU6500 ) {
sensor - > _id = HAL_INS_MPU6500 ;
} else {
sensor - > _id = HAL_INS_MPU60XX_SPI ;
}
return sensor ;
}
bool AP_InertialSensor_Revo : : _init ( )
{
_drdy_pin = hal . gpio - > channel ( INVENSENSE_DRDY_PIN ) ;
_drdy_pin - > mode ( INPUT_PULLDOWN ) ;
bool success = _hardware_init ( ) ;
return success ;
}
void AP_InertialSensor_Revo : : _start ( ) {
// initially run the bus at low speed
_dev - > set_speed ( AP_HAL : : Device : : SPEED_LOW ) ;
// setup ODR and on-sensor filtering
_set_filter_register ( ) ;
// set sample rate to 1000Hz and apply a software filter
// In this configuration, the gyro sample rate is 8kHz
_register_write ( MPUREG_SMPLRT_DIV , 0 , true ) ;
hal . scheduler - > delay_microseconds ( 10 ) ;
// Gyro scale 2000º/s
_register_write ( MPUREG_GYRO_CONFIG , BITS_GYRO_FS_2000DPS , true ) ;
hal . scheduler - > delay_microseconds ( 10 ) ;
if ( _mpu_type = = Invensense_MPU6000 & &
( ( product_id = = MPU6000ES_REV_C4 ) | |
( product_id = = MPU6000ES_REV_C5 ) | |
( product_id = = MPU6000_REV_C4 ) | |
( product_id = = MPU6000_REV_C5 ) ) ) {
// Accel scale 8g (4096 LSB/g)
// Rev C has different scaling than rev D
_register_write ( MPUREG_ACCEL_CONFIG , 1 < < 3 , true ) ;
_accel_scale = GRAVITY_MSS / 4096.f ;
} else {
// Accel scale 16g (2048 LSB/g)
_register_write ( MPUREG_ACCEL_CONFIG , 3 < < 3 , true ) ;
_accel_scale = GRAVITY_MSS / 2048.f ;
}
hal . scheduler - > delay_microseconds ( 10 ) ;
if ( _mpu_type = = Invensense_ICM20608 | |
_mpu_type = = Invensense_ICM20602 ) {
// this avoids a sensor bug, see description above
_register_write ( MPUREG_ICM_UNDOC1 , MPUREG_ICM_UNDOC1_VALUE , true ) ;
}
// configure interrupt to fire when new data arrives
_register_write ( MPUREG_INT_ENABLE , BIT_RAW_RDY_EN ) ;
hal . scheduler - > delay_microseconds ( 10 ) ;
// clear interrupt on any read, and hold the data ready pin high
// until we clear the interrupt
_register_write ( MPUREG_INT_PIN_CFG , _register_read ( MPUREG_INT_PIN_CFG ) | BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN ) ;
// now that we have initialised, we set the bus speed to high
_dev - > set_speed ( AP_HAL : : Device : : SPEED_HIGH ) ;
}
void AP_InertialSensor_Revo : : start ( )
{
if ( ! _dev - > get_semaphore ( ) - > take ( HAL_SEMAPHORE_BLOCK_FOREVER ) ) {
return ;
}
// initially run the bus at low speed
_dev - > set_speed ( AP_HAL : : Device : : SPEED_LOW ) ;
// only used for wake-up in accelerometer only low power mode
_register_write ( MPUREG_PWR_MGMT_2 , 0x00 ) ;
hal . scheduler - > delay ( 1 ) ;
// never use buggy FIFO
// _fifo_reset();
// grab the used instances
enum DevTypes gdev , adev ;
switch ( _mpu_type ) {
case Invensense_MPU9250 :
gdev = DEVTYPE_GYR_MPU9250 ;
adev = DEVTYPE_ACC_MPU9250 ;
break ;
case Invensense_MPU6000 :
case Invensense_MPU6500 :
case Invensense_ICM20608 :
case Invensense_ICM20602 :
default :
gdev = DEVTYPE_GYR_MPU6000 ;
adev = DEVTYPE_ACC_MPU6000 ;
break ;
}
/*
setup temperature sensitivity and offset . This varies
considerably between parts
*/
switch ( _mpu_type ) {
case Invensense_MPU9250 :
temp_zero = 21 ;
temp_sensitivity = 1.0 / 340 ;
break ;
case Invensense_MPU6000 :
case Invensense_MPU6500 :
temp_zero = 36.53 ;
temp_sensitivity = 1.0 / 340 ;
break ;
case Invensense_ICM20608 :
case Invensense_ICM20602 :
temp_zero = 25 ;
temp_sensitivity = 1.0 / 326.8 ;
break ;
}
_gyro_instance = _imu . register_gyro ( 1000 , _dev - > get_bus_id_devtype ( gdev ) ) ;
_accel_instance = _imu . register_accel ( 1000 , _dev - > get_bus_id_devtype ( adev ) ) ;
// read and remember the product ID rev c has 1/2 the sensitivity of rev d
product_id = _register_read ( MPUREG_PRODUCT_ID ) ;
_start ( ) ; // start MPU
_dev - > get_semaphore ( ) - > give ( ) ;
// setup sensor rotations from probe()
set_gyro_orientation ( _gyro_instance , _rotation ) ;
set_accel_orientation ( _accel_instance , _rotation ) ;
// allocate fifo buffer
_fifo_buffer = ( uint8_t * ) ( hal . util - > malloc_type ( ( MPU_FIFO_BUFFER_LEN + 1 ) * MPU_SAMPLE_SIZE , AP_HAL : : Util : : MEM_DMA_SAFE ) ) ;
if ( _fifo_buffer = = nullptr ) {
AP_HAL : : panic ( " Invensense: Unable to allocate FIFO buffer " ) ;
}
GPIO : : _attach_interrupt ( INVENSENSE_DRDY_PIN , Scheduler : : get_handler ( FUNCTOR_BIND_MEMBER ( & AP_InertialSensor_Revo : : _isr , void ) ) , RISING , MPU_INT_PRIORITY ) ;
_register_read ( MPUREG_INT_STATUS ) ; // reset interrupt request
// some longer than MPU period
task_handle = Scheduler : : register_timer_task ( 1010 , FUNCTOR_BIND_MEMBER ( & AP_InertialSensor_Revo : : _poll_data , void ) , NULL ) ; // period just for case, task will be activated by request
// REVOMINIScheduler::set_task_priority(task_handle, DRIVER_PRIORITY); // like other drivers
}
/*
publish any pending data
*/
bool AP_InertialSensor_Revo : : update ( )
{
update_accel ( _accel_instance ) ;
update_gyro ( _gyro_instance ) ;
_publish_temperature ( _accel_instance , _temp_filtered ) ;
return true ;
}
/*
accumulate new samples
*/
void AP_InertialSensor_Revo : : accumulate ( )
{
// nothing to do
}
/*
* Return true if the Invensense has new data available for reading .
*
* We use the data ready pin if it is available . Otherwise , read the
* status register .
*/
bool AP_InertialSensor_Revo : : _data_ready ( )
{
return _drdy_pin - > read ( ) ! = 0 ;
}
/*
ISR procedure for data read . Ring buffer don ' t needs to use semaphores for data access
also we don ' t own a bus semaphore and can ' t guarantee that bus is free . But in Revo MPU uses personal SPI bus so it is ABSOLUTELY free : )
*/
void AP_InertialSensor_Revo : : _isr ( ) {
uint8_t * data = _fifo_buffer + MPU_SAMPLE_SIZE * write_ptr ;
// _fifo_buffer[write_ptr].time = REVOMINIScheduler::_micros64();
_dev - > register_completion_callback ( FUNCTOR_BIND_MEMBER ( & AP_InertialSensor_Revo : : _ioc , void ) ) ; // IO completion interrupt
_block_read ( MPUREG_ACCEL_XOUT_H , data , MPU_SAMPLE_SIZE ) ; // start SPI transfer
}
void AP_InertialSensor_Revo : : _ioc ( ) { // io completion ISR, data already in its place
uint16_t new_wp = write_ptr + 1 ;
if ( new_wp > = MPU_FIFO_BUFFER_LEN ) { // move write pointer
new_wp = 0 ; // ring
}
if ( new_wp = = read_ptr ) { // buffer overflow
# ifdef MPU_DEBUG
REVOMINIScheduler : : MPU_buffer_overflow ( ) ; // count them
// not overwrite, just skip last data
# endif
} else {
write_ptr = new_wp ; // move forward
}
//_dev->register_completion_callback(NULL);
// we should release the bus semaphore if we use them
// _dev->get_semaphore()->give(); // release
if ( Scheduler : : get_current_task ( ) ! = ( void * ) task_handle ) {
/*
REVOMINIScheduler : : set_task_active ( task_handle ) ; // resume task instead of using period.
REVOMINIScheduler : : context_switch_isr ( ) ; // and reschedule tasks after interrupt
*/
Scheduler : : task_resume ( task_handle ) ; // resume task instead of using period.
}
}
/*
* Timer process to poll for new data from the Invensense . Called from timer ' s interrupt or from personal thread
*/
void AP_InertialSensor_Revo : : _poll_data ( )
{
_read_fifo ( ) ;
}
bool AP_InertialSensor_Revo : : _accumulate ( uint8_t * samples , uint8_t n_samples )
{
bool ret = true ;
for ( uint8_t i = 0 ; i < n_samples ; i + + ) {
const uint8_t * data = samples + MPU_SAMPLE_SIZE * i ;
Vector3f accel , gyro ;
bool fsync_set = false ;
accel = Vector3f ( int16_val ( data , 1 ) ,
int16_val ( data , 0 ) ,
- int16_val ( data , 2 ) ) * _accel_scale ;
int16_t t2 = int16_val ( data , 3 ) ;
/*
if ( ! _check_raw_temp ( t2 ) ) {
debug ( " temp reset %d %d i=%d " , _raw_temp , t2 , i ) ;
return false ; // just skip this sample
}
*/
float temp = t2 * temp_sensitivity + temp_zero ;
gyro = Vector3f ( int16_val ( data , 5 ) ,
int16_val ( data , 4 ) ,
- int16_val ( data , 6 ) ) * GYRO_SCALE ;
_rotate_and_correct_accel ( _accel_instance , accel ) ;
_rotate_and_correct_gyro ( _gyro_instance , gyro ) ;
#if 0 // filter out samples if vector length changed by 100% This is cool for debug but drops samples in the case of even weak blows
# define FILTER_KOEF 0.1
float len = accel . length ( ) ;
if ( is_zero ( accel_len ) ) {
accel_len = len ;
} else {
float d = abs ( accel_len - len ) / ( accel_len + len ) ;
if ( d * 100 > 50 ) { // difference more than 100% from mean value
debug ( " accel len error: mean %f got %f " , accel_len , len ) ;
ret = false ; //just report
float k = FILTER_KOEF / ( d * 10 ) ; // 5 and more, so one bad sample never change mean more than 4%
accel_len = accel_len * ( 1 - k ) + len * k ; // complimentary filter 1/k on bad samples
} else {
accel_len = accel_len * ( 1 - FILTER_KOEF ) + len * FILTER_KOEF ; // complimentary filter 1/10 on good samples
}
}
# endif
if ( ret ) {
uint8_t kG = hal_param_helper - > _correct_gyro ;
if ( kG ) { // compensate gyro drift by long-time mean
float gyro_koef = 1.0 / ( kG * 1000 ) ; // integrator time constant in seconds
gyro_mean = gyro_mean * ( 1 - gyro_koef ) + gyro * gyro_koef ;
gyro - = gyro_mean ;
}
_notify_new_accel_raw_sample ( _accel_instance , accel , 0 , fsync_set ) ;
_notify_new_gyro_raw_sample ( _gyro_instance , gyro ) ;
_temp_filtered = _temp_filter . apply ( temp ) ;
}
}
return ret ;
}
/*
when doing fast sampling the sensor gives us 8 k samples / second . Every 2 nd accel sample is a duplicate .
To filter this we first apply a 1 p low pass filter at 188 Hz , then we
average over 8 samples to bring the data rate down to 1 kHz . This
gives very good aliasing rejection at frequencies well above what
can be handled with 1 kHz sample rates .
*/
bool AP_InertialSensor_Revo : : _accumulate_fast_sampling ( uint8_t * samples , uint8_t n_samples )
{
int32_t tsum = 0 ;
const int32_t clip_limit = AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS / _accel_scale ;
bool clipped = false ;
bool ret = true ;
for ( uint8_t i = 0 ; i < n_samples ; i + + ) {
const uint8_t * data = samples + MPU_SAMPLE_SIZE * i ;
// use temperatue to detect FIFO corruption
int16_t t2 = int16_val ( data , 3 ) ;
/* MPU don't likes such reads
if ( ! _check_raw_temp ( t2 ) ) {
debug ( " temp reset %d %d " , _raw_temp , t2 ) ;
// _fifo_reset();
ret = false ;
break ;
}
*/
tsum + = t2 ;
if ( ( _accum . count & 1 ) = = 0 ) {
// accel data is at 4kHz
Vector3f a ( int16_val ( data , 1 ) ,
int16_val ( data , 0 ) ,
- int16_val ( data , 2 ) ) ;
if ( fabsf ( a . x ) > clip_limit | |
fabsf ( a . y ) > clip_limit | |
fabsf ( a . z ) > clip_limit ) {
clipped = true ;
}
_accum . accel + = _accum . accel_filter . apply ( a ) ;
}
Vector3f g ( int16_val ( data , 5 ) ,
int16_val ( data , 4 ) ,
- int16_val ( data , 6 ) ) ;
_accum . gyro + = _accum . gyro_filter . apply ( g ) ;
_accum . count + + ;
if ( _accum . count = = MPU_FIFO_DOWNSAMPLE_COUNT ) {
float ascale = _accel_scale / ( MPU_FIFO_DOWNSAMPLE_COUNT / 2 ) ;
_accum . accel * = ascale ;
float gscale = GYRO_SCALE / MPU_FIFO_DOWNSAMPLE_COUNT ;
_accum . gyro * = gscale ;
_rotate_and_correct_accel ( _accel_instance , _accum . accel ) ;
_rotate_and_correct_gyro ( _gyro_instance , _accum . gyro ) ;
_notify_new_accel_raw_sample ( _accel_instance , _accum . accel , 0 , false ) ;
_notify_new_gyro_raw_sample ( _gyro_instance , _accum . gyro ) ;
_accum . accel . zero ( ) ;
_accum . gyro . zero ( ) ;
_accum . count = 0 ;
}
}
if ( clipped ) {
increment_clip_count ( _accel_instance ) ;
}
if ( ret ) {
float temp = ( static_cast < float > ( tsum ) / n_samples ) * temp_sensitivity + temp_zero ;
_temp_filtered = _temp_filter . apply ( temp ) ;
}
return ret ;
}
# define MAX_NODATA_TIME 5000 // 5ms
void AP_InertialSensor_Revo : : _read_fifo ( )
{
uint32_t now = Scheduler : : _micros ( ) ;
# ifdef MPU_DEBUG_LOG
uint16_t old_log_ptr = mpu_log_ptr ;
mpu_log_item & p = mpu_log [ mpu_log_ptr + + ] ;
if ( mpu_log_ptr > = MPU_LOG_SIZE ) mpu_log_ptr = 0 ;
p . t = now ;
p . read_ptr = read_ptr ;
p . write_ptr = write_ptr ;
# endif
if ( read_ptr = = write_ptr ) {
if ( _data_ready ( ) ) { // no interrupt for some reason?
_isr ( ) ;
}
if ( now - last_sample > MAX_NODATA_TIME ) { // something went wrong - data stream stopped
_start ( ) ; // try to restart MPU
last_sample = now ;
# ifdef MPU_DEBUG
REVOMINIScheduler : : MPU_restarted ( ) ; // count them
# endif
}
return ;
}
last_sample = now ;
uint16_t count = 0 ;
# ifdef MPU_DEBUG
uint32_t dt = 0 ;
uint32_t t = now ;
# endif
while ( read_ptr ! = write_ptr ) { // there are samples
// uint64_t time = _fifo_buffer[read_ptr++].time; // we can get exact time
uint8_t * rx = _fifo_buffer + MPU_SAMPLE_SIZE * read_ptr + + ; // calculate address and move to next item
if ( read_ptr > = MPU_FIFO_BUFFER_LEN ) { // move write pointer
read_ptr = 0 ; // ring
}
if ( _fast_sampling ) {
if ( ! _accumulate_fast_sampling ( rx , 1 ) ) {
// debug("stop at %u of %u", n_samples, bytes_read/MPU_SAMPLE_SIZE);
// break; don't break before all items in queue will be readed
continue ;
}
} else {
if ( ! _accumulate ( rx , 1 ) ) {
// break; don't break before all items in queue will be readed
continue ;
}
}
count + + ;
}
now = Scheduler : : _micros ( ) ;
last_sample = now ;
# ifdef MPU_DEBUG_LOG
if ( count = = 1 ) {
mpu_log_ptr = old_log_ptr ;
}
# endif
# ifdef MPU_DEBUG
dt = now - t ; // time from entry
REVOMINIScheduler : : MPU_stats ( count , dt ) ;
# endif
// only wait_for_sample() uses delay_microseconds_boost() so
// resume main thread then it waits for this sample - sample already got
Scheduler : : resume_boost ( ) ;
}
/*
fetch temperature in order to detect FIFO sync errors
*/
bool AP_InertialSensor_Revo : : _check_raw_temp ( int16_t t2 )
{
if ( abs ( t2 - _raw_temp ) < 400 ) {
// cached copy OK
return true ;
}
uint8_t trx [ 2 ] ;
if ( _block_read ( MPUREG_TEMP_OUT_H , trx , 2 ) ) {
_raw_temp = int16_val ( trx , 0 ) ;
}
return ( abs ( t2 - _raw_temp ) < 400 ) ;
}
bool AP_InertialSensor_Revo : : _block_read ( uint8_t reg , uint8_t * buf ,
uint32_t size )
{
return _dev - > read_registers ( reg , buf , size ) ;
}
uint8_t AP_InertialSensor_Revo : : _register_read ( uint8_t reg )
{
uint8_t val = 0 ;
_dev - > read_registers ( reg , & val , 1 ) ;
return val ;
}
void AP_InertialSensor_Revo : : _register_write ( uint8_t reg , uint8_t val , bool checked )
{
_dev - > write_register ( reg , val , checked ) ;
}
/*
set the DLPF filter frequency . Assumes caller has taken semaphore
*/
void AP_InertialSensor_Revo : : _set_filter_register ( void )
{
uint8_t config ;
# if INVENSENSE_EXT_SYNC_ENABLE
// add in EXT_SYNC bit if enabled
config = ( MPUREG_CONFIG_EXT_SYNC_AZ < < MPUREG_CONFIG_EXT_SYNC_SHIFT ) ;
# else
config = 0 ;
# endif
if ( enable_fast_sampling ( _accel_instance ) ) {
_fast_sampling = ( _mpu_type ! = Invensense_MPU6000 & & _dev - > bus_type ( ) = = AP_HAL : : Device : : BUS_TYPE_SPI ) ;
if ( _fast_sampling ) {
# ifdef DEBUG_BUILD
printf ( " MPU[%u]: enabled fast sampling \n " , _accel_instance ) ;
# endif
// for logging purposes set the oversamping rate
_set_accel_oversampling ( _accel_instance , MPU_FIFO_DOWNSAMPLE_COUNT / 2 ) ;
_set_gyro_oversampling ( _gyro_instance , MPU_FIFO_DOWNSAMPLE_COUNT ) ;
/* set divider for internal sample rate to 0x1F when fast
sampling enabled . This reduces the impact of the slave
sensor on the sample rate . It ends up with around 75 Hz
slave rate , and reduces the impact on the gyro and accel
sample rate , ending up with around 7760 Hz gyro rate and
3880 Hz accel rate
*/
_register_write ( MPUREG_I2C_SLV4_CTRL , 0x1F ) ;
}
}
if ( _fast_sampling ) {
// this gives us 8kHz sampling on gyros and 4kHz on accels
config | = BITS_DLPF_CFG_256HZ_NOLPF2 ;
} else {
// limit to 1kHz if not on SPI
config | = BITS_DLPF_CFG_188HZ ;
}
config | = MPUREG_CONFIG_FIFO_MODE_STOP ;
_register_write ( MPUREG_CONFIG , config , true ) ;
if ( _mpu_type ! = Invensense_MPU6000 ) {
if ( _fast_sampling ) {
// setup for 4kHz accels
_register_write ( ICMREG_ACCEL_CONFIG2 , ICM_ACC_FCHOICE_B , true ) ;
} else {
_register_write ( ICMREG_ACCEL_CONFIG2 , ICM_ACC_DLPF_CFG_218HZ , true ) ;
}
}
}
/*
check whoami for sensor type
*/
bool AP_InertialSensor_Revo : : _check_whoami ( void )
{
uint8_t whoami = _register_read ( MPUREG_WHOAMI ) ;
switch ( whoami ) {
case MPU_WHOAMI_6000 :
_mpu_type = Invensense_MPU6000 ;
return true ;
case MPU_WHOAMI_6500 :
_mpu_type = Invensense_MPU6500 ;
return true ;
case MPU_WHOAMI_MPU9250 :
case MPU_WHOAMI_MPU9255 :
_mpu_type = Invensense_MPU9250 ;
return true ;
case MPU_WHOAMI_20608 :
_mpu_type = Invensense_ICM20608 ;
return true ;
case MPU_WHOAMI_20602 :
_mpu_type = Invensense_ICM20602 ;
return true ;
}
// not a value WHOAMI result
return false ;
}
bool AP_InertialSensor_Revo : : _hardware_init ( void )
{
if ( ! _dev - > get_semaphore ( ) - > take ( HAL_SEMAPHORE_BLOCK_FOREVER ) ) {
return false ;
}
// setup for register checking
_dev - > setup_checked_registers ( 7 , 20 ) ;
// initially run the bus at low speed
_dev - > set_speed ( AP_HAL : : Device : : SPEED_LOW ) ;
if ( ! _check_whoami ( ) ) {
_dev - > get_semaphore ( ) - > give ( ) ;
return false ;
}
// Chip reset
uint8_t tries ;
for ( tries = 0 ; tries < 5 ; tries + + ) {
_last_stat_user_ctrl = _register_read ( MPUREG_USER_CTRL ) ;
/* First disable the master I2C to avoid hanging the slaves on the
* aulixiliar I2C bus - it will be enabled again if the AuxiliaryBus
* is used */
if ( _last_stat_user_ctrl & BIT_USER_CTRL_I2C_MST_EN ) {
_last_stat_user_ctrl & = ~ BIT_USER_CTRL_I2C_MST_EN ;
_register_write ( MPUREG_USER_CTRL , _last_stat_user_ctrl ) ;
hal . scheduler - > delay ( 10 ) ;
}
/* reset device */
_register_write ( MPUREG_PWR_MGMT_1 , BIT_PWR_MGMT_1_DEVICE_RESET ) ;
hal . scheduler - > delay ( 100 ) ;
/* bus-dependent initialization */
if ( _dev - > bus_type ( ) = = AP_HAL : : Device : : BUS_TYPE_SPI ) {
/* Disable I2C bus if SPI selected (Recommended in Datasheet to be
* done just after the device is reset ) */
_last_stat_user_ctrl | = BIT_USER_CTRL_I2C_IF_DIS ;
_register_write ( MPUREG_USER_CTRL , _last_stat_user_ctrl ) ;
}
/* bus-dependent initialization */
if ( ( _dev - > bus_type ( ) = = AP_HAL : : Device : : BUS_TYPE_I2C ) & & ( _mpu_type = = Invensense_MPU9250 ) ) {
/* Enable I2C bypass to access internal AK8963 */
_register_write ( MPUREG_INT_PIN_CFG , BIT_BYPASS_EN ) ;
}
// Wake up device and select GyroZ clock. Note that the
// Invensense starts up in sleep mode, and it can take some time
// for it to come out of sleep
_register_write ( MPUREG_PWR_MGMT_1 , BIT_PWR_MGMT_1_CLK_ZGYRO ) ;
hal . scheduler - > delay ( 5 ) ;
// check it has woken up
if ( _register_read ( MPUREG_PWR_MGMT_1 ) = = BIT_PWR_MGMT_1_CLK_ZGYRO ) {
break ;
}
hal . scheduler - > delay ( 10 ) ;
if ( _data_ready ( ) ) {
break ;
}
}
_dev - > set_speed ( AP_HAL : : Device : : SPEED_HIGH ) ;
_dev - > get_semaphore ( ) - > give ( ) ;
if ( tries = = 5 ) {
# ifdef DEBUG_BUILD
printf ( " Failed to boot Invensense 5 times \n " ) ;
# endif
return false ;
}
if ( _mpu_type = = Invensense_ICM20608 | |
_mpu_type = = Invensense_ICM20602 ) {
// this avoids a sensor bug, see description above
_register_write ( MPUREG_ICM_UNDOC1 , MPUREG_ICM_UNDOC1_VALUE , true ) ;
}
return true ;
}
# endif // BOARD_REVO