2016-11-23 21:26:06 -04:00
/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
/*
* AP_Landing_Slope . cpp - Landing logic handler for ArduPlane for STANDARD_GLIDE_SLOPE
*/
# include "AP_Landing.h"
# include <GCS_MAVLink/GCS.h>
# include <AP_HAL/AP_HAL.h>
2018-11-11 07:56:29 -04:00
# include <AP_LandingGear/AP_LandingGear.h>
2019-08-27 17:06:50 -03:00
# include <AP_AHRS/AP_AHRS.h>
2019-06-13 23:58:39 -03:00
# include <AP_GPS/AP_GPS.h>
2022-03-03 23:29:46 -04:00
# include <AP_Logger/AP_Logger.h>
2016-11-23 21:26:06 -04:00
2022-12-08 20:12:33 -04:00
# if defined(APM_BUILD_TYPE)
// - this is just here to encourage the build system to supply the "legacy build defines". The actual dependecy is in the AP_LandingGear.h and AP_LandingGear_config.h headers
# endif
2017-01-10 15:47:31 -04:00
void AP_Landing : : type_slope_do_land ( const AP_Mission : : Mission_Command & cmd , const float relative_altitude )
{
2017-01-11 01:31:11 -04:00
initial_slope = 0 ;
slope = 0 ;
// once landed, post some landing statistics to the GCS
2017-01-26 17:05:45 -04:00
type_slope_flags . post_stats = false ;
2017-01-11 01:31:11 -04:00
2022-11-29 02:29:35 -04:00
type_slope_stage = SlopeStage : : NORMAL ;
2017-07-09 01:13:11 -03:00
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Landing approach start at %.1fm " , ( double ) relative_altitude ) ;
2017-01-10 15:47:31 -04:00
}
2017-01-10 03:44:25 -04:00
void AP_Landing : : type_slope_verify_abort_landing ( const Location & prev_WP_loc , Location & next_WP_loc , bool & throttle_suppressed )
2016-11-23 21:26:06 -04:00
{
// when aborting a landing, mimic the verify_takeoff with steering hold. Once
// the altitude has been reached, restart the landing sequence
2017-01-10 01:29:50 -04:00
throttle_suppressed = false ;
2019-04-05 10:02:43 -03:00
nav_controller - > update_heading_hold ( prev_WP_loc . get_bearing_to ( next_WP_loc ) ) ;
2017-01-10 01:29:50 -04:00
}
2016-11-23 21:26:06 -04:00
2017-01-10 03:44:25 -04:00
/*
update navigation for landing . Called when on landing approach or
final flare
*/
bool AP_Landing : : type_slope_verify_land ( const Location & prev_WP_loc , Location & next_WP_loc , const Location & current_loc ,
const float height , const float sink_rate , const float wp_proportion , const uint32_t last_flying_ms , const bool is_armed , const bool is_flying , const bool rangefinder_state_in_range )
{
// we don't 'verify' landing in the sense that it never completes,
// so we don't verify command completion. Instead we use this to
// adjust final landing parameters
2017-01-11 02:18:09 -04:00
// determine stage
2022-11-29 02:29:35 -04:00
if ( type_slope_stage = = SlopeStage : : NORMAL ) {
2017-01-11 02:18:09 -04:00
const bool heading_lined_up = abs ( nav_controller - > bearing_error_cd ( ) ) < 1000 & & ! nav_controller - > data_is_stale ( ) ;
const bool on_flight_line = fabsf ( nav_controller - > crosstrack_error ( ) ) < 5.0f & & ! nav_controller - > data_is_stale ( ) ;
const bool below_prev_WP = current_loc . alt < prev_WP_loc . alt ;
if ( ( mission . get_prev_nav_cmd_id ( ) = = MAV_CMD_NAV_LOITER_TO_ALT ) | |
( wp_proportion > = 0 & & heading_lined_up & & on_flight_line ) | |
( wp_proportion > 0.15f & & heading_lined_up & & below_prev_WP ) | |
( wp_proportion > 0.5f ) ) {
2022-11-29 02:29:35 -04:00
type_slope_stage = SlopeStage : : APPROACH ;
2017-01-11 02:18:09 -04:00
}
}
2018-12-12 00:50:28 -04:00
2016-11-23 21:26:06 -04:00
/* Set land_complete (which starts the flare) under 3 conditions:
1 ) we are within LAND_FLARE_ALT meters of the landing altitude
2 ) we are within LAND_FLARE_SEC of the landing point vertically
by the calculated sink rate ( if LAND_FLARE_SEC ! = 0 )
3 ) we have gone past the landing point and don ' t have
rangefinder data ( to prevent us keeping throttle on
after landing if we ' ve had positive baro drift )
*/
// flare check:
// 1) below flare alt/sec requires approach stage check because if sec/alt are set too
// large, and we're on a hard turn to line up for approach, we'll prematurely flare by
// skipping approach phase and the extreme roll limits will make it hard to line up with runway
// 2) passed land point and don't have an accurate AGL
// 3) probably crashed (ensures motor gets turned off)
2017-01-10 03:44:25 -04:00
const bool on_approach_stage = type_slope_is_on_approach ( ) ;
const bool below_flare_alt = ( height < = flare_alt ) ;
const bool below_flare_sec = ( flare_sec > 0 & & height < = sink_rate * flare_sec ) ;
const bool probably_crashed = ( aparm . crash_detection_enable & & fabsf ( sink_rate ) < 0.2f & & ! is_flying ) ;
2016-11-23 21:26:06 -04:00
2021-05-12 08:10:57 -03:00
height_flare_log = height ;
2020-03-03 23:43:37 -04:00
const AP_GPS & gps = AP : : gps ( ) ;
2016-11-23 21:26:06 -04:00
if ( ( on_approach_stage & & below_flare_alt ) | |
( on_approach_stage & & below_flare_sec & & ( wp_proportion > 0.5 ) ) | |
( ! rangefinder_state_in_range & & wp_proportion > = 1 ) | |
probably_crashed ) {
2022-11-29 02:29:35 -04:00
if ( type_slope_stage ! = SlopeStage : : FINAL ) {
2017-01-26 17:05:45 -04:00
type_slope_flags . post_stats = true ;
2016-11-23 21:26:06 -04:00
if ( is_flying & & ( AP_HAL : : millis ( ) - last_flying_ms ) > 3000 ) {
2019-06-13 23:58:39 -03:00
gcs ( ) . send_text ( MAV_SEVERITY_CRITICAL , " Flare crash detected: speed=%.1f " , ( double ) gps . ground_speed ( ) ) ;
2016-11-23 21:26:06 -04:00
} else {
2017-07-09 01:13:11 -03:00
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Flare %.1fm sink=%.2f speed=%.1f dist=%.1f " ,
2016-11-23 21:26:06 -04:00
( double ) height , ( double ) sink_rate ,
2019-06-13 23:58:39 -03:00
( double ) gps . ground_speed ( ) ,
2019-02-24 20:16:22 -04:00
( double ) current_loc . get_distance ( next_WP_loc ) ) ;
2016-11-23 21:26:06 -04:00
}
2018-11-11 07:56:29 -04:00
2022-11-29 02:29:35 -04:00
type_slope_stage = SlopeStage : : FINAL ;
2022-12-08 20:12:33 -04:00
# if AP_LANDINGGEAR_ENABLED
2018-11-11 07:56:29 -04:00
// Check if the landing gear was deployed before landing
// If not - go around
2019-02-10 14:05:45 -04:00
AP_LandingGear * LG_inst = AP_LandingGear : : get_singleton ( ) ;
2018-12-12 00:50:28 -04:00
if ( LG_inst ! = nullptr & & ! LG_inst - > check_before_land ( ) ) {
2018-11-11 07:56:29 -04:00
type_slope_request_go_around ( ) ;
gcs ( ) . send_text ( MAV_SEVERITY_CRITICAL , " Landing gear was not deployed " ) ;
}
2022-12-08 20:12:33 -04:00
# endif
2016-11-23 21:26:06 -04:00
}
2019-06-13 23:58:39 -03:00
if ( gps . ground_speed ( ) < 3 ) {
2016-11-23 21:26:06 -04:00
// reload any airspeed or groundspeed parameters that may have
// been set for landing. We don't do this till ground
// speed drops below 3.0 m/s as otherwise we will change
// target speeds too early.
aparm . airspeed_cruise_cm . load ( ) ;
aparm . min_gndspeed_cm . load ( ) ;
aparm . throttle_cruise . load ( ) ;
}
2022-11-29 02:29:35 -04:00
} else if ( type_slope_stage = = SlopeStage : : APPROACH & & pre_flare_airspeed > 0 ) {
2016-11-23 21:26:06 -04:00
bool reached_pre_flare_alt = pre_flare_alt > 0 & & ( height < = pre_flare_alt ) ;
bool reached_pre_flare_sec = pre_flare_sec > 0 & & ( height < = sink_rate * pre_flare_sec ) ;
if ( reached_pre_flare_alt | | reached_pre_flare_sec ) {
2022-11-29 02:29:35 -04:00
type_slope_stage = SlopeStage : : PREFLARE ;
2016-11-23 21:26:06 -04:00
}
}
/*
when landing we keep the L1 navigation waypoint 200 m ahead . This
prevents sudden turns if we overshoot the landing point
*/
2023-02-02 18:58:39 -04:00
Location land_WP_loc = next_WP_loc ;
2019-04-05 10:02:43 -03:00
int32_t land_bearing_cd = prev_WP_loc . get_bearing_to ( next_WP_loc ) ;
2019-04-05 03:11:26 -03:00
land_WP_loc . offset_bearing ( land_bearing_cd * 0.01f , prev_WP_loc . get_distance ( current_loc ) + 200 ) ;
2018-12-12 00:50:28 -04:00
nav_controller - > update_waypoint ( prev_WP_loc , land_WP_loc ) ;
2016-11-23 21:26:06 -04:00
// once landed and stationary, post some statistics
// this is done before disarm_if_autoland_complete() so that it happens on the next loop after the disarm
2017-01-26 17:05:45 -04:00
if ( type_slope_flags . post_stats & & ! is_armed ) {
type_slope_flags . post_stats = false ;
2019-02-24 20:16:22 -04:00
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Distance from LAND point=%.2fm " , ( double ) current_loc . get_distance ( next_WP_loc ) ) ;
2016-11-23 21:26:06 -04:00
}
// check if we should auto-disarm after a confirmed landing
2022-11-29 02:29:35 -04:00
if ( type_slope_stage = = SlopeStage : : FINAL ) {
2017-01-11 15:06:32 -04:00
disarm_if_autoland_complete_fn ( ) ;
}
2016-11-23 21:26:06 -04:00
2020-03-03 23:43:37 -04:00
if ( mission . continue_after_land ( ) & &
2022-11-29 02:29:35 -04:00
type_slope_stage = = SlopeStage : : FINAL & &
2020-03-03 23:43:37 -04:00
gps . status ( ) > = AP_GPS : : GPS_OK_FIX_3D & &
gps . ground_speed ( ) < 1 ) {
/*
user has requested to continue with mission after a
landing . Return true to allow for continue
*/
return true ;
}
2016-11-23 21:26:06 -04:00
/*
we return false as a landing mission item never completes
we stay on this waypoint unless the GCS commands us to change
mission item , reset the mission , command a go - around or finish
a land_abort procedure .
*/
return false ;
}
2022-09-29 20:10:40 -03:00
void AP_Landing : : type_slope_adjust_landing_slope_for_rangefinder_bump ( AP_FixedWing : : Rangefinder_State & rangefinder_state , Location & prev_WP_loc , Location & next_WP_loc , const Location & current_loc , const float wp_distance , int32_t & target_altitude_offset_cm )
2016-11-23 21:26:06 -04:00
{
// check the rangefinder correction for a large change. When found, recalculate the glide slope. This is done by
// determining the slope from your current location to the land point then following that back up to the approach
// altitude and moving the prev_wp to that location. From there
float correction_delta = fabsf ( rangefinder_state . last_stable_correction ) - fabsf ( rangefinder_state . correction ) ;
if ( slope_recalc_shallow_threshold < = 0 | |
fabsf ( correction_delta ) < slope_recalc_shallow_threshold ) {
return ;
}
rangefinder_state . last_stable_correction = rangefinder_state . correction ;
float corrected_alt_m = ( adjusted_altitude_cm_fn ( ) - next_WP_loc . alt ) * 0.01f - rangefinder_state . correction ;
2019-02-24 20:16:22 -04:00
float total_distance_m = prev_WP_loc . get_distance ( next_WP_loc ) ;
2016-11-23 21:26:06 -04:00
float top_of_glide_slope_alt_m = total_distance_m * corrected_alt_m / wp_distance ;
prev_WP_loc . alt = top_of_glide_slope_alt_m * 100 + next_WP_loc . alt ;
// re-calculate auto_state.land_slope with updated prev_WP_loc
setup_landing_glide_slope ( prev_WP_loc , next_WP_loc , current_loc , target_altitude_offset_cm ) ;
if ( rangefinder_state . correction > = 0 ) { // we're too low or object is below us
// correction positive means we're too low so we should continue on with
// the newly computed shallower slope instead of pitching/throttling up
2017-01-26 17:05:45 -04:00
} else if ( slope_recalc_steep_threshold_to_abort > 0 & & ! type_slope_flags . has_aborted_due_to_slope_recalc ) {
2016-11-23 21:26:06 -04:00
// correction negative means we're too high and need to point down (and speed up) to re-align
// to land on target. A large negative correction means we would have to dive down a lot and will
// generating way too much speed that we can not bleed off in time. It is better to remember
// the large baro altitude offset and abort the landing to come around again with the correct altitude
// offset and "perfect" slope.
// calculate projected slope with projected alt
2018-05-03 22:20:12 -03:00
float new_slope_deg = degrees ( atanf ( slope ) ) ;
float initial_slope_deg = degrees ( atanf ( initial_slope ) ) ;
2016-11-23 21:26:06 -04:00
// is projected slope too steep?
if ( new_slope_deg - initial_slope_deg > slope_recalc_steep_threshold_to_abort ) {
2017-07-09 01:13:11 -03:00
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Landing slope too steep, aborting (%.0fm %.1fdeg) " ,
2016-11-23 21:26:06 -04:00
( double ) rangefinder_state . correction , ( double ) ( new_slope_deg - initial_slope_deg ) ) ;
alt_offset = rangefinder_state . correction ;
2017-01-26 17:05:45 -04:00
flags . commanded_go_around = true ;
type_slope_flags . has_aborted_due_to_slope_recalc = true ; // only allow this once.
2018-05-03 22:20:12 -03:00
Log ( ) ;
2016-11-23 21:26:06 -04:00
}
}
}
2016-12-06 16:21:04 -04:00
bool AP_Landing : : type_slope_request_go_around ( void )
{
2017-01-26 17:05:45 -04:00
flags . commanded_go_around = true ;
2016-12-06 16:21:04 -04:00
return true ;
}
2016-11-23 21:26:06 -04:00
/*
a special glide slope calculation for the landing approach
During the land approach use a linear glide slope to a point
projected through the landing point . We don ' t use the landing point
itself as that leads to discontinuities close to the landing point ,
which can lead to erratic pitch control
*/
void AP_Landing : : type_slope_setup_landing_glide_slope ( const Location & prev_WP_loc , const Location & next_WP_loc , const Location & current_loc , int32_t & target_altitude_offset_cm )
{
2019-02-24 20:16:22 -04:00
float total_distance = prev_WP_loc . get_distance ( next_WP_loc ) ;
2016-11-23 21:26:06 -04:00
// If someone mistakenly puts all 0's in their LAND command then total_distance
// will be calculated as 0 and cause a divide by 0 error below. Lets avoid that.
if ( total_distance < 1 ) {
total_distance = 1 ;
}
// height we need to sink for this WP
float sink_height = ( prev_WP_loc . alt - next_WP_loc . alt ) * 0.01f ;
// current ground speed
float groundspeed = ahrs . groundspeed ( ) ;
if ( groundspeed < 0.5f ) {
groundspeed = 0.5f ;
}
// calculate time to lose the needed altitude
float sink_time = total_distance / groundspeed ;
if ( sink_time < 0.5f ) {
sink_time = 0.5f ;
}
// find the sink rate needed for the target location
float sink_rate = sink_height / sink_time ;
// the height we aim for is the one to give us the right flare point
float aim_height = flare_sec * sink_rate ;
if ( aim_height < = 0 ) {
aim_height = flare_alt ;
}
// don't allow the aim height to be too far above LAND_FLARE_ALT
if ( flare_alt > 0 & & aim_height > flare_alt * 2 ) {
aim_height = flare_alt * 2 ;
}
2021-11-26 17:25:49 -04:00
// calculate time spent in flare assuming the sink rate reduces over time from sink_rate at aim_height
2021-12-03 03:06:16 -04:00
// to tecs_controller->get_land_sinkrate() at touchdown
const float weight = constrain_float ( 0.01f * ( float ) flare_effectivness_pct , 0.0f , 1.0f ) ;
const float flare_sink_rate_avg = MAX ( weight * tecs_Controller - > get_land_sinkrate ( ) + ( 1.0f - weight ) * sink_rate , 0.1f ) ;
2021-11-26 17:25:49 -04:00
const float flare_time = aim_height / flare_sink_rate_avg ;
2016-11-23 21:26:06 -04:00
// distance to flare is based on ground speed, adjusted as we
// get closer. This takes into account the wind
float flare_distance = groundspeed * flare_time ;
// don't allow the flare before half way along the final leg
2022-12-14 08:39:55 -04:00
if ( flare_distance > total_distance * 0.5f ) {
flare_distance = total_distance * 0.5f ;
2016-11-23 21:26:06 -04:00
}
// project a point 500 meters past the landing point, passing
// through the landing point
const float land_projection = 500 ;
2019-04-05 10:02:43 -03:00
int32_t land_bearing_cd = prev_WP_loc . get_bearing_to ( next_WP_loc ) ;
2016-11-23 21:26:06 -04:00
// now calculate our aim point, which is before the landing
// point and above it
Location loc = next_WP_loc ;
2019-04-05 03:11:26 -03:00
loc . offset_bearing ( land_bearing_cd * 0.01f , - flare_distance ) ;
2016-11-23 21:26:06 -04:00
loc . alt + = aim_height * 100 ;
2018-11-25 13:55:54 -04:00
// calculate slope to landing point
bool is_first_calc = is_zero ( slope ) ;
slope = ( sink_height - aim_height ) / ( total_distance - flare_distance ) ;
if ( is_first_calc ) {
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Landing glide slope %.1f degrees " , ( double ) degrees ( atanf ( slope ) ) ) ;
}
2016-11-23 21:26:06 -04:00
// calculate point along that slope 500m ahead
2019-04-05 03:11:26 -03:00
loc . offset_bearing ( land_bearing_cd * 0.01f , land_projection ) ;
2016-11-23 21:26:06 -04:00
loc . alt - = slope * land_projection * 100 ;
// setup the offset_cm for set_target_altitude_proportion()
target_altitude_offset_cm = loc . alt - prev_WP_loc . alt ;
// calculate the proportion we are to the target
2019-04-12 05:23:03 -03:00
float land_proportion = current_loc . line_path_proportion ( prev_WP_loc , loc ) ;
2016-11-23 21:26:06 -04:00
// now setup the glide slope for landing
set_target_altitude_proportion_fn ( loc , 1.0f - land_proportion ) ;
// stay within the range of the start and end locations in altitude
constrain_target_altitude_location_fn ( loc , prev_WP_loc ) ;
}
2016-12-06 07:39:40 -04:00
2018-11-11 07:56:29 -04:00
int32_t AP_Landing : : type_slope_get_target_airspeed_cm ( void )
{
2017-01-10 15:46:51 -04:00
// we're landing, check for custom approach and
// pre-flare airspeeds. Also increase for head-winds
2021-11-12 13:54:43 -04:00
const float land_airspeed = tecs_Controller - > get_land_airspeed ( ) ;
2017-01-11 02:18:09 -04:00
int32_t target_airspeed_cm = aparm . airspeed_cruise_cm ;
2023-06-25 16:35:45 -03:00
if ( land_airspeed > = 0 ) {
target_airspeed_cm = land_airspeed * 100 ;
} else {
target_airspeed_cm = 0.5 * ( aparm . airspeed_cruise_cm * 0.01 + aparm . airspeed_min ) ;
}
2017-01-10 15:46:51 -04:00
switch ( type_slope_stage ) {
2023-06-25 16:35:45 -03:00
case SlopeStage : : NORMAL :
target_airspeed_cm = aparm . airspeed_cruise_cm ;
break ;
2022-11-29 02:29:35 -04:00
case SlopeStage : : APPROACH :
2017-01-10 15:46:51 -04:00
break ;
2022-11-29 02:29:35 -04:00
case SlopeStage : : PREFLARE :
case SlopeStage : : FINAL :
2017-01-10 15:46:51 -04:00
if ( pre_flare_airspeed > 0 ) {
// if we just preflared then continue using the pre-flare airspeed during final flare
target_airspeed_cm = pre_flare_airspeed * 100 ;
}
break ;
}
// when landing, add half of head-wind.
2023-01-17 18:11:32 -04:00
const float head_wind_comp = constrain_float ( wind_comp , 0.0f , 100.0f ) * 0.01 ;
2022-12-11 01:51:04 -04:00
const int32_t head_wind_compensation_cm = head_wind ( ) * head_wind_comp * 100 ;
2017-01-10 15:46:51 -04:00
2023-01-17 18:11:32 -04:00
const uint32_t max_airspeed_cm = AP_Landing : : allow_max_airspeed_on_land ( ) ? aparm . airspeed_max * 100 : aparm . airspeed_cruise_cm ;
return constrain_int32 ( target_airspeed_cm + head_wind_compensation_cm , target_airspeed_cm , max_airspeed_cm ) ;
2017-01-10 15:46:51 -04:00
}
2018-11-11 07:56:29 -04:00
int32_t AP_Landing : : type_slope_constrain_roll ( const int32_t desired_roll_cd , const int32_t level_roll_limit_cd )
{
2022-11-29 02:29:35 -04:00
if ( type_slope_stage = = SlopeStage : : FINAL ) {
2017-01-11 15:06:32 -04:00
return constrain_int32 ( desired_roll_cd , level_roll_limit_cd * - 1 , level_roll_limit_cd ) ;
} else {
return desired_roll_cd ;
}
}
2017-01-10 01:29:50 -04:00
bool AP_Landing : : type_slope_is_flaring ( void ) const
{
2022-11-29 02:29:35 -04:00
return ( type_slope_stage = = SlopeStage : : FINAL ) ;
2017-01-10 01:29:50 -04:00
}
bool AP_Landing : : type_slope_is_on_approach ( void ) const
{
2022-11-29 02:29:35 -04:00
return ( type_slope_stage = = SlopeStage : : APPROACH | |
type_slope_stage = = SlopeStage : : PREFLARE ) ;
2017-01-10 01:29:50 -04:00
}
bool AP_Landing : : type_slope_is_expecting_impact ( void ) const
{
2022-11-29 02:29:35 -04:00
return ( type_slope_stage = = SlopeStage : : PREFLARE | |
type_slope_stage = = SlopeStage : : FINAL ) ;
2017-01-10 01:29:50 -04:00
}
2017-01-12 19:59:11 -04:00
bool AP_Landing : : type_slope_is_complete ( void ) const
{
2022-11-29 02:29:35 -04:00
return ( type_slope_stage = = SlopeStage : : FINAL ) ;
2017-01-12 19:59:11 -04:00
}
2017-01-26 17:06:04 -04:00
void AP_Landing : : type_slope_log ( void ) const
{
2020-04-06 23:55:56 -03:00
// @LoggerMessage: LAND
// @Description: Slope Landing data
// @Field: TimeUS: Time since system startup
// @Field: stage: progress through landing sequence
// @Field: f1: Landing flags
// @Field: f2: Slope-specific landing flags
// @Field: slope: Slope to landing point
// @Field: slopeInit: Initial slope to landing point
// @Field: altO: Rangefinder correction
2021-05-12 08:10:57 -03:00
// @Field: fh: Height for flare timing.
2022-07-27 09:16:39 -03:00
AP : : logger ( ) . WriteStreaming ( " LAND " , " TimeUS,stage,f1,f2,slope,slopeInit,altO,fh " , " QBBBffff " ,
2017-01-26 17:06:04 -04:00
AP_HAL : : micros64 ( ) ,
type_slope_stage ,
flags ,
type_slope_flags ,
2017-01-31 13:59:21 -04:00
( double ) slope ,
( double ) initial_slope ,
2021-05-12 08:10:57 -03:00
( double ) alt_offset ,
( double ) height_flare_log ) ;
2017-01-26 17:06:04 -04:00
}
2017-02-14 15:11:01 -04:00
bool AP_Landing : : type_slope_is_throttle_suppressed ( void ) const
{
2022-11-29 02:29:35 -04:00
return type_slope_stage = = SlopeStage : : FINAL ;
2017-02-14 15:11:01 -04:00
}