ardupilot/ArduCopter/control_rtl.cpp

496 lines
19 KiB
C++
Raw Normal View History

#include "Copter.h"
/*
* Init and run calls for RTL flight mode
2014-01-25 04:24:43 -04:00
*
* There are two parts to RTL, the high level decision making which controls which state we are in
* and the lower implementation of the waypoint or landing controllers within those states
*/
// rtl_init - initialise rtl controller
bool Copter::rtl_init(bool ignore_checks)
{
if (position_ok() || ignore_checks) {
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init();
rtl_build_path(!failsafe.terrain);
2014-01-25 04:24:43 -04:00
rtl_climb_start();
return true;
}else{
return false;
}
}
// re-start RTL with terrain following disabled
void Copter::rtl_restart_without_terrain()
{
// log an error
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_RESTARTED_RTL);
if (rtl_path.terrain_used) {
rtl_build_path(false);
rtl_climb_start();
gcs().send_text(MAV_SEVERITY_CRITICAL,"Restarting RTL - Terrain data missing");
}
}
// rtl_run - runs the return-to-launch controller
// should be called at 100hz or more
void Copter::rtl_run(bool disarm_on_land)
{
2014-01-25 04:24:43 -04:00
// check if we need to move to next state
if (rtl_state_complete) {
switch (rtl_state) {
case RTL_InitialClimb:
2014-01-25 04:24:43 -04:00
rtl_return_start();
break;
case RTL_ReturnHome:
2014-01-25 04:24:43 -04:00
rtl_loiterathome_start();
break;
case RTL_LoiterAtHome:
if (rtl_path.land || failsafe.radio) {
2014-01-25 04:24:43 -04:00
rtl_land_start();
}else{
rtl_descent_start();
2014-01-25 04:24:43 -04:00
}
break;
case RTL_FinalDescent:
2014-01-25 04:24:43 -04:00
// do nothing
break;
case RTL_Land:
// do nothing - rtl_land_run will take care of disarming motors
2014-01-25 04:24:43 -04:00
break;
}
}
// call the correct run function
switch (rtl_state) {
case RTL_InitialClimb:
rtl_climb_return_run();
2014-01-25 04:24:43 -04:00
break;
case RTL_ReturnHome:
rtl_climb_return_run();
2014-01-25 04:24:43 -04:00
break;
case RTL_LoiterAtHome:
2014-01-25 04:24:43 -04:00
rtl_loiterathome_run();
break;
case RTL_FinalDescent:
rtl_descent_run();
2014-01-25 04:24:43 -04:00
break;
case RTL_Land:
rtl_land_run(disarm_on_land);
2014-01-25 04:24:43 -04:00
break;
}
}
// rtl_climb_start - initialise climb to RTL altitude
void Copter::rtl_climb_start()
2014-01-25 04:24:43 -04:00
{
rtl_state = RTL_InitialClimb;
2014-01-25 04:24:43 -04:00
rtl_state_complete = false;
2015-10-19 21:19:37 -03:00
// RTL_SPEED == 0 means use WPNAV_SPEED
if (g.rtl_speed_cms != 0) {
wp_nav->set_speed_xy(g.rtl_speed_cms);
2015-10-19 21:19:37 -03:00
}
2014-05-07 03:03:00 -03:00
// set the destination
if (!wp_nav->set_wp_destination(rtl_path.climb_target)) {
// this should not happen because rtl_build_path will have checked terrain data was available
2016-03-18 07:44:09 -03:00
Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_TO_SET_DESTINATION);
set_mode(LAND, MODE_REASON_TERRAIN_FAILSAFE);
return;
2016-03-18 07:44:09 -03:00
}
wp_nav->set_fast_waypoint(true);
2014-01-25 04:24:43 -04:00
// hold current yaw during initial climb
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_return_start - initialise return to home
void Copter::rtl_return_start()
2014-01-25 04:24:43 -04:00
{
rtl_state = RTL_ReturnHome;
2014-01-25 04:24:43 -04:00
rtl_state_complete = false;
if (!wp_nav->set_wp_destination(rtl_path.return_target)) {
// failure must be caused by missing terrain data, restart RTL
rtl_restart_without_terrain();
2016-03-18 07:44:09 -03:00
}
2014-01-25 04:24:43 -04:00
// initialise yaw to point home (maybe)
set_auto_yaw_mode(get_default_auto_yaw_mode(true));
}
// rtl_climb_return_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
2014-01-25 04:24:43 -04:00
// called by rtl_run at 100hz or more
void Copter::rtl_climb_return_run()
2014-01-25 04:24:43 -04:00
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
2014-01-25 04:24:43 -04:00
// reset attitude control targets
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
2014-01-25 04:24:43 -04:00
// To-Do: re-initialise wpnav targets
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
2015-05-04 23:34:21 -03:00
if (!is_zero(target_yaw_rate)) {
2014-01-25 04:24:43 -04:00
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
2014-01-25 04:24:43 -04:00
// run waypoint controller
failsafe_terrain_set_status(wp_nav->update_wpnav());
2014-01-25 04:24:43 -04:00
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
2014-01-25 04:24:43 -04:00
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
2014-01-25 04:24:43 -04:00
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain());
2014-01-25 04:24:43 -04:00
}
// check if we've completed this stage of RTL
rtl_state_complete = wp_nav->reached_wp_destination();
2014-01-25 04:24:43 -04:00
}
// rtl_loiterathome_start - initialise return to home
void Copter::rtl_loiterathome_start()
2014-01-25 04:24:43 -04:00
{
rtl_state = RTL_LoiterAtHome;
2014-01-25 04:24:43 -04:00
rtl_state_complete = false;
rtl_loiter_start_time = millis();
// yaw back to initial take-off heading yaw unless pilot has already overridden yaw
if(get_default_auto_yaw_mode(true) != AUTO_YAW_HOLD) {
set_auto_yaw_mode(AUTO_YAW_RESETTOARMEDYAW);
} else {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// rtl_climb_return_descent_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller
// called by rtl_run at 100hz or more
void Copter::rtl_loiterathome_run()
2014-01-25 04:24:43 -04:00
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
2014-01-25 04:24:43 -04:00
// reset attitude control targets
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
2014-01-25 04:24:43 -04:00
// To-Do: re-initialise wpnav targets
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!failsafe.radio) {
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
2015-05-04 23:34:21 -03:00
if (!is_zero(target_yaw_rate)) {
2014-01-25 04:24:43 -04:00
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
2014-01-25 04:24:43 -04:00
// run waypoint controller
failsafe_terrain_set_status(wp_nav->update_wpnav());
2014-01-25 04:24:43 -04:00
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
2014-01-25 04:24:43 -04:00
// call attitude controller
if (auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
2014-01-25 04:24:43 -04:00
}else{
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain());
2014-01-25 04:24:43 -04:00
}
// check if we've completed this stage of RTL
if ((millis() - rtl_loiter_start_time) >= (uint32_t)g.rtl_loiter_time.get()) {
if (auto_yaw_mode == AUTO_YAW_RESETTOARMEDYAW) {
// check if heading is within 2 degrees of heading when vehicle was armed
if (labs(wrap_180_cd(ahrs.yaw_sensor-initial_armed_bearing)) <= 200) {
rtl_state_complete = true;
}
} else {
// we have loitered long enough
rtl_state_complete = true;
}
}
2014-01-25 04:24:43 -04:00
}
// rtl_descent_start - initialise descent to final alt
void Copter::rtl_descent_start()
{
rtl_state = RTL_FinalDescent;
rtl_state_complete = false;
// Set wp navigation target to above home
wp_nav->init_loiter_target(wp_nav->get_wp_destination());
// initialise altitude target to stopping point
pos_control->set_target_to_stopping_point_z();
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_descent_run - implements the final descent to the RTL_ALT
// called by rtl_run at 100hz or more
void Copter::rtl_descent_run()
{
int16_t roll_control = 0, pitch_control = 0;
float target_yaw_rate = 0;
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
// set target to current position
wp_nav->init_loiter_target();
return;
}
// process pilot's input
if (!failsafe.radio) {
if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){
Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT);
// exit land if throttle is high
2016-01-25 19:40:41 -04:00
if (!set_mode(LOITER, MODE_REASON_THROTTLE_LAND_ESCAPE)) {
set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE);
}
}
if (g.land_repositioning) {
// apply SIMPLE mode transform to pilot inputs
update_simple_mode();
// process pilot's roll and pitch input
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
roll_control = channel_roll->get_control_in();
pitch_control = channel_pitch->get_control_in();
}
// get pilot's desired yaw rate
ArduCopter: Fix up after refactoring RC_Channel class Further to refactor of RC_Channel class which included adding get_xx set_xx methods, change reads and writes to the public members to calls to get and set functionsss old public member(int16_t) get function -> int16_t set function (int16_t) (expression where c is an object of type RC_Channel) c.radio_in c.get_radio_in() c.set_radio_in(v) c.control_in c.get_control_in() c.set_control_in(v) c.servo_out c.get_servo_out() c.set_servo_out(v) c.pwm_out c.get_pwm_out() // use existing c.radio_out c.get_radio_out() c.set_radio_out(v) c.radio_max c.get_radio_max() c.set_radio_max(v) c.radio_min c.get_radio_min() c.set_radio_min(v) c.radio_trim c.get_radio_trim() c.set_radio_trim(v); c.min_max_configured() // return true if min and max are configured Because data members of RC_Channels are now private and so cannot be written directly some overloads are provided in the Plane classes to provide the old functionality new overload Plane::stick_mix_channel(RC_Channel *channel) which forwards to the previously existing void stick_mix_channel(RC_Channel *channel, int16_t &servo_out); new overload Plane::channel_output_mixer(Rc_Channel* , RC_Channel*)const which forwards to (uint8_t mixing_type, int16_t & chan1, int16_t & chan2)const; Rename functions RC_Channel_aux::set_radio_trim(Aux_servo_function_t function) to RC_Channel_aux::set_trim_to_radio_in_for(Aux_servo_function_t function) RC_Channel_aux::set_servo_out(Aux_servo_function_t function, int16_t value) to RC_Channel_aux::set_servo_out_for(Aux_servo_function_t function, int16_t value) Rationale: RC_Channel is a complicated class, which combines several functionalities dealing with stick inputs in pwm and logical units, logical and actual actuator outputs, unit conversion etc, etc The intent of this PR is to clarify existing use of the class. At the basic level it should now be possible to grep all places where private variable is set by searching for the set_xx function. (The wider purpose is to provide a more generic and logically simpler method of output mixing. This is a small step)
2016-05-08 05:46:59 -03:00
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// process roll, pitch inputs
wp_nav->set_pilot_desired_acceleration(roll_control, pitch_control);
// run loiter controller
wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler);
// call z-axis position controller
pos_control->set_alt_target_with_slew(rtl_path.descent_target.alt, G_Dt);
pos_control->update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain());
// check if we've reached within 20cm of final altitude
rtl_state_complete = abs(rtl_path.descent_target.alt - current_loc.alt) < 20;
}
2014-01-25 04:24:43 -04:00
// rtl_loiterathome_start - initialise controllers to loiter over home
void Copter::rtl_land_start()
2014-01-25 04:24:43 -04:00
{
rtl_state = RTL_Land;
2014-01-25 04:24:43 -04:00
rtl_state_complete = false;
// Set wp navigation target to above home
wp_nav->init_loiter_target(wp_nav->get_wp_destination());
2014-01-25 04:24:43 -04:00
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
2014-01-25 04:24:43 -04:00
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// rtl_returnhome_run - return home
// called by rtl_run at 100hz or more
void Copter::rtl_land_run(bool disarm_on_land)
2014-01-25 04:24:43 -04:00
{
// if not auto armed or landing completed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
#if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw
// call attitude controller
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain());
attitude_control->set_throttle_out(0,false,g.throttle_filt);
#else
motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED);
// multicopters do not stabilize roll/pitch/yaw when disarmed
attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt);
#endif
2014-01-25 04:24:43 -04:00
// set target to current position
wp_nav->init_loiter_target();
// disarm when the landing detector says we've landed
if (ap.land_complete && disarm_on_land) {
init_disarm_motors();
}
// check if we've completed this stage of RTL
rtl_state_complete = ap.land_complete;
2014-01-25 04:24:43 -04:00
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
land_run_horizontal_control();
land_run_vertical_control();
2014-01-25 04:24:43 -04:00
// check if we've completed this stage of RTL
rtl_state_complete = ap.land_complete;
}
void Copter::rtl_build_path(bool terrain_following_allowed)
{
// origin point is our stopping point
2016-03-18 07:44:09 -03:00
Vector3f stopping_point;
pos_control->get_stopping_point_xy(stopping_point);
pos_control->get_stopping_point_z(stopping_point);
2016-03-18 07:44:09 -03:00
rtl_path.origin_point = Location_Class(stopping_point);
rtl_path.origin_point.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_HOME);
// compute return target
rtl_compute_return_target(terrain_following_allowed);
// climb target is above our origin point at the return altitude
2016-03-18 07:44:09 -03:00
rtl_path.climb_target = Location_Class(rtl_path.origin_point.lat, rtl_path.origin_point.lng, rtl_path.return_target.alt, rtl_path.return_target.get_alt_frame());
// descent target is below return target at rtl_alt_final
2016-03-18 07:44:09 -03:00
rtl_path.descent_target = Location_Class(rtl_path.return_target.lat, rtl_path.return_target.lng, g.rtl_alt_final, Location_Class::ALT_FRAME_ABOVE_HOME);
// set land flag
rtl_path.land = g.rtl_alt_final <= 0;
}
// compute the return target - home or rally point
// return altitude in cm above home at which vehicle should return home
// return target's altitude is updated to a higher altitude that the vehicle can safely return at (frame may also be set)
void Copter::rtl_compute_return_target(bool terrain_following_allowed)
{
// set return target to nearest rally point or home position (Note: alt is absolute)
#if AC_RALLY == ENABLED
rtl_path.return_target = rally.calc_best_rally_or_home_location(current_loc, ahrs.get_home().alt);
#else
rtl_path.return_target = ahrs.get_home();
#endif
2016-03-18 07:44:09 -03:00
// curr_alt is current altitude above home or above terrain depending upon use_terrain
int32_t curr_alt = current_loc.alt;
// decide if we should use terrain altitudes
rtl_path.terrain_used = terrain_use() && terrain_following_allowed;
if (rtl_path.terrain_used) {
2016-03-18 07:44:09 -03:00
// attempt to retrieve terrain alt for current location, stopping point and origin
int32_t origin_terr_alt, return_target_terr_alt;
if (!rtl_path.origin_point.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, origin_terr_alt) ||
!rtl_path.return_target.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, return_target_terr_alt) ||
2016-03-18 07:44:09 -03:00
!current_loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, curr_alt)) {
rtl_path.terrain_used = false;
2016-03-18 07:44:09 -03:00
Log_Write_Error(ERROR_SUBSYSTEM_TERRAIN, ERROR_CODE_MISSING_TERRAIN_DATA);
}
}
// convert return-target alt (which is an absolute alt) to alt-above-home or alt-above-terrain
if (!rtl_path.terrain_used || !rtl_path.return_target.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_TERRAIN)) {
if (!rtl_path.return_target.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_HOME)) {
// this should never happen but just in case
rtl_path.return_target.set_alt_cm(0, Location_Class::ALT_FRAME_ABOVE_HOME);
}
rtl_path.terrain_used = false;
}
// set new target altitude to return target altitude
// Note: this is alt-above-home or terrain-alt depending upon use_terrain
// Note: ignore negative altitudes which could happen if user enters negative altitude for rally point or terrain is higher at rally point compared to home
int32_t target_alt = MAX(rtl_path.return_target.alt, 0);
// increase target to maximum of current altitude + climb_min and rtl altitude
target_alt = MAX(target_alt, curr_alt + MAX(0, g.rtl_climb_min));
target_alt = MAX(target_alt, MAX(g.rtl_altitude, RTL_ALT_MIN));
// reduce climb if close to return target
float rtl_return_dist_cm = rtl_path.return_target.get_distance(rtl_path.origin_point) * 100.0f;
2016-03-18 07:44:09 -03:00
// don't allow really shallow slopes
if (g.rtl_cone_slope >= RTL_MIN_CONE_SLOPE) {
target_alt = MAX(curr_alt, MIN(target_alt, MAX(rtl_return_dist_cm*g.rtl_cone_slope, curr_alt+RTL_ABS_MIN_CLIMB)));
2016-01-06 03:00:29 -04:00
}
// set returned target alt to new target_alt
rtl_path.return_target.set_alt_cm(target_alt, rtl_path.terrain_used ? Location_Class::ALT_FRAME_ABOVE_TERRAIN : Location_Class::ALT_FRAME_ABOVE_HOME);
#if AC_FENCE == ENABLED
// ensure not above fence altitude if alt fence is enabled
// Note: because the rtl_path.climb_target's altitude is simply copied from the return_target's altitude,
// if terrain altitudes are being used, the code below which reduces the return_target's altitude can lead to
// the vehicle not climbing at all as RTL begins. This can be overly conservative and it might be better
// to apply the fence alt limit independently on the origin_point and return_target
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
// get return target as alt-above-home so it can be compared to fence's alt
if (rtl_path.return_target.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, target_alt)) {
float fence_alt = fence.get_safe_alt_max()*100.0f;
if (target_alt > fence_alt) {
// reduce target alt to the fence alt
rtl_path.return_target.alt -= (target_alt - fence_alt);
}
}
}
#endif
2016-03-18 07:44:09 -03:00
// ensure we do not descend
rtl_path.return_target.alt = MAX(rtl_path.return_target.alt, curr_alt);
}