ardupilot/libraries/RC/AP_RC.cpp

330 lines
8.2 KiB
C++
Raw Normal View History

/*
AP_RC.cpp - Radio library for Arduino
Code by Jason Short. DIYDrones.com
This library is free software; you can redistribute it and / or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include "AP_RC.h"
#include <avr/interrupt.h>
#define REVERSE 3050
// Variable definition for interrupt
volatile uint16_t timer1count = 0;
volatile uint16_t timer2count = 0;
volatile uint16_t timer3count = 0;
volatile uint16_t timer4count = 0;
volatile int16_t timer1diff = 1500 * 2;
volatile int16_t timer2diff = 1500 * 2;
volatile int16_t timer3diff = 1100 * 2;
volatile int16_t timer4diff = 1500 * 2;
//volatile uint16_t raw[8];
#define CH1_READ 1
#define CH2_READ 2
#define CH3_READ 4
#define CH4_READ 8
volatile int8_t _rc_ch_read = 0;
volatile uint8_t _timer_ovf_a = 0;
volatile uint8_t _timer_ovf_b = 0;
volatile uint8_t _timer_ovf = 0;
AP_RC::AP_RC()
{
_direction_mask = 255; // move to super class
pinMode(2,INPUT); // PD2 - INT0 - CH 1 in
pinMode(3,INPUT); // PD3 - INT1 - CH 2 in
pinMode(11,INPUT); // PB3 - MOSI/OC2 - CH 3 in
pinMode(13,INPUT); // PB5 - SCK - CH 4 in
pinMode(10,OUTPUT); // PB2 - OC1B - CH 1 out
pinMode(8, OUTPUT); // PB0 - AIN1 - CH 3 out
pinMode(9, OUTPUT); // PB1 - OC1A - CH 2 out
DDRC |= B00010000; // PC4 - - CH 4 out
}
void
AP_RC::init()
{
// enable pin change interrupt 2 - PCINT23..16
PCICR = _BV(PCIE2);
// enable pin change interrupt 0 - PCINT7..0
PCICR |= _BV(PCIE0);
// enable in change interrupt on PB5 (digital pin 13)
PCMSK0 = _BV(PCINT3) | _BV(PCINT5);
// enable pin change interrupt on PD2,PD3 (digital pin 2,3)
PCMSK2 = _BV(PCINT18) | _BV(PCINT19);
// Timer 1
TCCR1A = ((1 << WGM11) | (1 << COM1B1) | (1 << COM1A1));
TCCR1B = (1 << WGM13) | (1 << WGM12) | (1 << CS11);
// Loop value
ICR1 = 40000;
// Throttle;
// Setting up the Timer 2 - 8 bit timer
TCCR2A = 0x0; // Normal Mode
TCCR2B = _BV(CS21) |_BV(CS20); //prescaler 32, at 16mhz (32/16) = 2, the counter will increment 1 every 2us
// trim out the radio
for(int c = 0; c < 50; c++){
delay(20);
read();
}
trim();
for(int y = 0; y < 4; y++) {
set_ch_pwm(y, radio_trim[y]);
}
// enable throttle and Ch4 output
TIMSK1 |= _BV(ICIE1); // Timer / Counter1, Input Capture Interrupt Enable // PB0 - output throttle
TIMSK2 = _BV(TOIE1) | _BV(OCIE2A) | _BV(OCIE2B); // Timer / Counter2 Compare Match A
}
void
AP_RC::read()
{
if((_direction_mask & 1) == 0 )
timer1diff = REVERSE - timer1diff;
if((_direction_mask & 2) == 0 )
timer2diff = REVERSE - timer2diff;
if((_direction_mask & 4) == 0 )
timer3diff = REVERSE - timer3diff;
if((_direction_mask & 8) == 0 )
timer4diff = REVERSE - timer4diff;
if(_mix_mode == 1){
// elevons
int16_t ailerons = (timer1diff - radio_trim[CH1]) * .3;
int16_t elevator = (timer2diff - radio_trim[CH2]) * .7;
radio_in[CH1] = (elevator - ailerons); // left
radio_in[CH2] = (elevator + ailerons); // right
radio_in[CH1] += radio_trim[CH1];
radio_in[CH2] += radio_trim[CH2];
//Serial.print("radio_in[CH1] ");
//Serial.print(radio_in[CH1],DEC);
//Serial.print(" \tradio_in[CH2] ");
//Serial.println(radio_in[CH2],DEC);
}else{
// normal
radio_in[CH1] = timer1diff;
radio_in[CH2] = timer2diff;
}
radio_in[CH3] = (float)radio_in[CH3] * .9 + timer3diff * .1;
radio_in[CH4] = timer4diff;
check_throttle_failsafe(radio_in[CH3]);
// output servos
for (uint8_t i = 0; i < 4; i++){
if (i == 3) continue;
if(radio_in[i] >= radio_trim[i])
servo_in[i] = (float)(radio_in[i] - radio_min[i]) / (float)(radio_max[i] - radio_min[i]) * 100.0;
else
servo_in[i] = (float)(radio_in[i] - radio_trim[i]) / (float)(radio_trim[i] - radio_min[i]) * 100.0;
}
servo_in[CH3] = (float)(radio_in[CH3] - radio_min[CH3]) / (float)(radio_max[CH3] - radio_min[CH3]) * 100.0;
servo_in[CH3] = constrain(servo_out[CH3], 0, 100);
}
void
AP_RC::output()
{
uint16_t out;
for (uint8_t i = 0; i < 4; i++){
if (i == 3) continue;
if(radio_in[i] >= radio_trim[i])
out = ((servo_in[i] * (radio_max[i] - radio_trim[i])) / 100) + radio_trim[i];
else
out = ((servo_in[i] * (radio_max[i] - radio_trim[i])) / 100) + radio_trim[i];
set_ch_pwm(i, out);
}
out = (servo_out[CH3] * (float)(radio_max[CH3] - radio_min[CH3])) / 100.0;
out += radio_min[CH3];
set_ch_pwm(CH3, out);
}
void
AP_RC::trim()
{
uint8_t temp = _mix_mode;
_mix_mode = 0;
read();
_mix_mode = temp;
radio_trim[CH1] = radio_in[CH1];
radio_trim[CH2] = radio_in[CH2];
radio_trim[CH3] = radio_in[CH3];
radio_trim[CH4] = radio_in[CH4];
//Serial.print("trim ");
//Serial.println(radio_trim[CH1], DEC);
}
void
AP_RC::twitch_servos(uint8_t times)
{
while (times > 0){
set_ch_pwm(CH1, radio_trim[CH1] + 100);
set_ch_pwm(CH2, radio_trim[CH2] + 100);
delay(400);
set_ch_pwm(CH1, radio_trim[CH1] - 100);
set_ch_pwm(CH2, radio_trim[CH2] - 100);
delay(200);
set_ch_pwm(CH1, radio_trim[CH1]);
set_ch_pwm(CH2, radio_trim[CH2]);
delay(30);
times--;
}
}
void
AP_RC::set_ch_pwm(uint8_t ch, uint16_t pwm)
{
switch(ch){
case CH1:
if((_direction_mask & 1) == 0 )
pwm = REVERSE - pwm;
pwm <<= 1;
OCR1A = pwm;
break;
case CH2:
if((_direction_mask & 2) == 0 )
pwm = REVERSE - pwm;
pwm <<= 1;
OCR1B = pwm;
break;
case CH3:
if((_direction_mask & 4) == 0 )
pwm = REVERSE - pwm;
// Jason's fancy 2µs hack
_timer_out = pwm % 512;
_timer_ovf_a = pwm / 512;
_timer_out >>= 1;
OCR2A = _timer_out;
break;
case CH4:
if((_direction_mask & 8) == 0 )
pwm = REVERSE - pwm;
_timer_out = pwm % 512;
_timer_ovf_b = pwm / 512;
_timer_out >>= 1;
OCR2B = _timer_out;
break;
}
}
// radio PWM input timers
ISR(PCINT2_vect) {
int cnt = TCNT1;
if(PIND & B00000100){ // ch 1 (pin 2) is high
if ((_rc_ch_read & CH1_READ) != CH1_READ){
_rc_ch_read |= CH1_READ;
timer1count = cnt;
}
}else if ((_rc_ch_read & CH1_READ) == CH1_READ){ // ch 1 (pin 2) is Low, and we were reading
_rc_ch_read &= B11111110;
if (cnt < timer1count) // Timer1 reset during the read of this pulse
timer1diff = (cnt + 40000 - timer1count) >> 1; // Timer1 TOP = 40000
else
timer1diff = (cnt - timer1count) >> 1;
}
if(PIND & B00001000){ // ch 2 (pin 3) is high
if ((_rc_ch_read & CH2_READ) != CH2_READ){
_rc_ch_read |= CH2_READ;
timer2count = cnt;
}
}else if ((_rc_ch_read & CH2_READ) == CH2_READ){ // ch 1 (pin 2) is Low
_rc_ch_read &= B11111101;
if (cnt < timer2count) // Timer1 reset during the read of this pulse
timer2diff = (cnt + 40000 - timer2count) >> 1; // Timer1 TOP = 40000
else
timer2diff = (cnt - timer2count) >> 1;
}
}
ISR(PCINT0_vect)
{
int cnt = TCNT1;
if(PINB & 8){ // pin 11
if ((_rc_ch_read & CH3_READ) != CH3_READ){
_rc_ch_read |= CH3_READ;
timer3count = cnt;
}
}else if ((_rc_ch_read & CH3_READ) == CH3_READ){ // ch 1 (pin 2) is Low
_rc_ch_read &= B11111011;
if (cnt < timer3count) // Timer1 reset during the read of this pulse
timer3diff = (cnt + 40000 - timer3count) >> 1; // Timer1 TOP = 40000
else
timer3diff = (cnt - timer3count) >> 1;
}
if(PINB & 32){ // pin 13
if ((_rc_ch_read & CH4_READ) != CH4_READ){
_rc_ch_read |= CH4_READ;
timer4count = cnt;
}
}else if ((_rc_ch_read & CH4_READ) == CH4_READ){ // ch 1 (pin 2) is Low
_rc_ch_read &= B11110111;
if (cnt < timer4count) // Timer1 reset during the read of this pulse
timer4diff = (cnt + 40000 - timer4count) >> 1; // Timer1 TOP = 40000
else
timer4diff = (cnt - timer4count) >> 1;
}
}
// Throttle Timer Interrupt
// ------------------------
ISR(TIMER1_CAPT_vect) // Timer/Counter1 Capture Event
{
//This is a timer 1 interrupts, executed every 20us
PORTB |= B00000001; //Putting the pin high!
PORTC |= B00010000; //Putting the pin high!
TCNT2 = 0; //restarting the counter of timer 2
_timer_ovf = 0;
}
ISR(TIMER2_OVF_vect)
{
_timer_ovf++;
}
ISR(TIMER2_COMPA_vect) // Timer/Counter2 Compare Match A
{
if(_timer_ovf == _timer_ovf_a){
PORTB &= B11111110; //Putting the pin low
}
}
ISR(TIMER2_COMPB_vect) // Timer/Counter2 Compare Match B Rudder Servo
{
if(_timer_ovf == _timer_ovf_b){
PORTC &= B11101111; //Putting the pin low!
}
}