ardupilot/ArduPlane/ekf_check.cpp

179 lines
6.8 KiB
C++
Raw Normal View History

#include "Plane.h"
/**
*
* Detects failures of the ekf or inertial nav system triggers an alert
* to the pilot and helps take countermeasures
*
*/
#ifndef EKF_CHECK_ITERATIONS_MAX
# define EKF_CHECK_ITERATIONS_MAX 10 // 1 second (ie. 10 iterations at 10hz) of bad variances signals a failure
#endif
#ifndef EKF_CHECK_WARNING_TIME
# define EKF_CHECK_WARNING_TIME (30*1000) // warning text messages are sent to ground no more than every 30 seconds
#endif
////////////////////////////////////////////////////////////////////////////////
// EKF_check structure
////////////////////////////////////////////////////////////////////////////////
static struct {
uint8_t fail_count; // number of iterations ekf or dcm have been out of tolerances
bool bad_variance; // true if ekf should be considered untrusted (fail_count has exceeded EKF_CHECK_ITERATIONS_MAX)
uint32_t last_warn_time; // system time of last warning in milliseconds. Used to throttle text warnings sent to GCS
bool failsafe_on; // true when the loss of navigation failsafe is on
} ekf_check_state;
// ekf_check - detects if ekf variance are out of tolerance and triggers failsafe
// should be called at 10hz
void Plane::ekf_check()
{
// ensure EKF_CHECK_ITERATIONS_MAX is at least 7
static_assert(EKF_CHECK_ITERATIONS_MAX >= 7, "EKF_CHECK_ITERATIONS_MAX must be at least 7");
// exit immediately if ekf has no origin yet - this assumes the origin can never become unset
Location temp_loc;
if (!ahrs.get_origin(temp_loc)) {
return;
}
// return immediately if motors are not armed, or ekf check is disabled
2020-05-10 05:11:12 -03:00
if (!plane.arming.is_armed() || !quadplane.in_vtol_posvel_mode() || (g2.fs_ekf_thresh <= 0.0f)) {
ekf_check_state.fail_count = 0;
ekf_check_state.bad_variance = false;
AP_Notify::flags.ekf_bad = ekf_check_state.bad_variance;
failsafe_ekf_off_event(); // clear failsafe
return;
}
// compare compass and velocity variance vs threshold
if (ekf_over_threshold()) {
// if compass is not yet flagged as bad
if (!ekf_check_state.bad_variance) {
// increase counter
ekf_check_state.fail_count++;
if (ekf_check_state.fail_count == (EKF_CHECK_ITERATIONS_MAX-2)) {
// we are two iterations away from declaring an EKF failsafe, ask the EKF if we can reset
// yaw to resolve the issue
ahrs.request_yaw_reset();
}
if (ekf_check_state.fail_count == (EKF_CHECK_ITERATIONS_MAX-1)) {
// we are just about to declare a EKF failsafe, ask the EKF if we can
// change lanes to resolve the issue
ahrs.check_lane_switch();
}
// if counter above max then trigger failsafe
if (ekf_check_state.fail_count >= EKF_CHECK_ITERATIONS_MAX) {
// limit count from climbing too high
ekf_check_state.fail_count = EKF_CHECK_ITERATIONS_MAX;
ekf_check_state.bad_variance = true;
AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_BAD_VARIANCE);
// send message to gcs
if ((AP_HAL::millis() - ekf_check_state.last_warn_time) > EKF_CHECK_WARNING_TIME) {
gcs().send_text(MAV_SEVERITY_CRITICAL,"EKF variance");
ekf_check_state.last_warn_time = AP_HAL::millis();
}
failsafe_ekf_event();
}
}
} else {
// reduce counter
if (ekf_check_state.fail_count > 0) {
ekf_check_state.fail_count--;
// if compass is flagged as bad and the counter reaches zero then clear flag
if (ekf_check_state.bad_variance && ekf_check_state.fail_count == 0) {
ekf_check_state.bad_variance = false;
AP::logger().Write_Error(LogErrorSubsystem::EKFCHECK, LogErrorCode::EKFCHECK_VARIANCE_CLEARED);
// clear failsafe
failsafe_ekf_off_event();
}
}
}
// set AP_Notify flags
AP_Notify::flags.ekf_bad = ekf_check_state.bad_variance;
// To-Do: add ekf variances to extended status
}
// ekf_over_threshold - returns true if the ekf's variance are over the tolerance
bool Plane::ekf_over_threshold()
{
// return false immediately if disabled
if (g2.fs_ekf_thresh <= 0.0f) {
return false;
}
// Get EKF innovations normalised wrt the innovaton test limits.
// A value above 1.0 means the EKF has rejected that sensor data
float position_variance, vel_variance, height_variance, tas_variance;
Vector3f mag_variance;
Vector2f offset;
if (!ahrs.get_variances(vel_variance, position_variance, height_variance, mag_variance, tas_variance, offset)) {
return false;
};
// The EKF rejects all magnetometer axes if any single axis exceeds limits
// so take the maximum of all axes
const float mag_max = fmaxf(fmaxf(mag_variance.x,mag_variance.y),mag_variance.z);
// Assign a score to each over threshold based on severity
uint8_t over_thresh_count = 0;
if (mag_max >= g2.fs_ekf_thresh) {
over_thresh_count++;
}
if (vel_variance >= (2.0f * g2.fs_ekf_thresh)) {
over_thresh_count += 2;
} else if (vel_variance >= g2.fs_ekf_thresh) {
over_thresh_count++;
}
// Position is the most important so accept a lower score from other sensors if position failed
if ((position_variance >= g2.fs_ekf_thresh && over_thresh_count >= 1) || over_thresh_count >= 2) {
return true;
}
return false;
}
// failsafe_ekf_event - perform ekf failsafe
void Plane::failsafe_ekf_event()
{
// return immediately if ekf failsafe already triggered
if (ekf_check_state.failsafe_on) {
return;
}
// EKF failsafe event has occurred
ekf_check_state.failsafe_on = true;
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_EKFINAV, LogErrorCode::FAILSAFE_OCCURRED);
// if not in a VTOL mode requring position, then nothing needs to be done
if (!quadplane.in_vtol_posvel_mode()) {
return;
}
if (quadplane.in_vtol_auto()) {
// the pilot is not controlling via sticks so switch to QLAND
plane.set_mode(mode_qland, ModeReason::EKF_FAILSAFE);
} else {
// the pilot is controlling via sticks so fallbacl to QHOVER
plane.set_mode(mode_qhover, ModeReason::EKF_FAILSAFE);
}
}
// failsafe_ekf_off_event - actions to take when EKF failsafe is cleared
void Plane::failsafe_ekf_off_event(void)
{
// return immediately if not in ekf failsafe
if (!ekf_check_state.failsafe_on) {
return;
}
ekf_check_state.failsafe_on = false;
AP::logger().Write_Error(LogErrorSubsystem::FAILSAFE_EKFINAV, LogErrorCode::FAILSAFE_RESOLVED);
}