2011-12-21 00:30:22 -04:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2011-11-12 23:20:25 -04:00
2012-10-11 21:27:19 -03:00
# include <AP_HAL.h>
2011-11-12 23:20:25 -04:00
# include "AP_InertialSensor_MPU6000.h"
2012-10-11 21:27:19 -03:00
extern const AP_HAL : : HAL & hal ;
2011-11-12 23:20:25 -04:00
2012-11-05 00:27:03 -04:00
// MPU6000 accelerometer scaling
2013-04-05 10:57:46 -03:00
# define MPU6000_ACCEL_SCALE_1G (GRAVITY_MSS / 4096.0f)
2012-11-05 00:27:03 -04:00
2011-11-12 23:20:25 -04:00
// MPU 6000 registers
2012-08-17 03:19:56 -03:00
# define MPUREG_XG_OFFS_TC 0x00
# define MPUREG_YG_OFFS_TC 0x01
# define MPUREG_ZG_OFFS_TC 0x02
# define MPUREG_X_FINE_GAIN 0x03
# define MPUREG_Y_FINE_GAIN 0x04
# define MPUREG_Z_FINE_GAIN 0x05
# define MPUREG_XA_OFFS_H 0x06 // X axis accelerometer offset (high byte)
# define MPUREG_XA_OFFS_L 0x07 // X axis accelerometer offset (low byte)
# define MPUREG_YA_OFFS_H 0x08 // Y axis accelerometer offset (high byte)
# define MPUREG_YA_OFFS_L 0x09 // Y axis accelerometer offset (low byte)
# define MPUREG_ZA_OFFS_H 0x0A // Z axis accelerometer offset (high byte)
# define MPUREG_ZA_OFFS_L 0x0B // Z axis accelerometer offset (low byte)
# define MPUREG_PRODUCT_ID 0x0C // Product ID Register
# define MPUREG_XG_OFFS_USRH 0x13 // X axis gyro offset (high byte)
# define MPUREG_XG_OFFS_USRL 0x14 // X axis gyro offset (low byte)
# define MPUREG_YG_OFFS_USRH 0x15 // Y axis gyro offset (high byte)
# define MPUREG_YG_OFFS_USRL 0x16 // Y axis gyro offset (low byte)
# define MPUREG_ZG_OFFS_USRH 0x17 // Z axis gyro offset (high byte)
# define MPUREG_ZG_OFFS_USRL 0x18 // Z axis gyro offset (low byte)
# define MPUREG_SMPLRT_DIV 0x19 // sample rate. Fsample= 1Khz/(<this value>+1) = 200Hz
# define MPUREG_SMPLRT_1000HZ 0x00
# define MPUREG_SMPLRT_500HZ 0x01
# define MPUREG_SMPLRT_250HZ 0x03
# define MPUREG_SMPLRT_200HZ 0x04
# define MPUREG_SMPLRT_100HZ 0x09
# define MPUREG_SMPLRT_50HZ 0x13
# define MPUREG_CONFIG 0x1A
# define MPUREG_GYRO_CONFIG 0x1B
2012-07-28 02:14:43 -03:00
// bit definitions for MPUREG_GYRO_CONFIG
2012-08-17 03:19:56 -03:00
# define BITS_GYRO_FS_250DPS 0x00
# define BITS_GYRO_FS_500DPS 0x08
# define BITS_GYRO_FS_1000DPS 0x10
# define BITS_GYRO_FS_2000DPS 0x18
# define BITS_GYRO_FS_MASK 0x18 // only bits 3 and 4 are used for gyro full scale so use this to mask off other bits
# define BITS_GYRO_ZGYRO_SELFTEST 0x20
# define BITS_GYRO_YGYRO_SELFTEST 0x40
# define BITS_GYRO_XGYRO_SELFTEST 0x80
# define MPUREG_ACCEL_CONFIG 0x1C
# define MPUREG_MOT_THR 0x1F // detection threshold for Motion interrupt generation. Motion is detected when the absolute value of any of the accelerometer measurements exceeds this
# define MPUREG_MOT_DUR 0x20 // duration counter threshold for Motion interrupt generation. The duration counter ticks at 1 kHz, therefore MOT_DUR has a unit of 1 LSB = 1 ms
# define MPUREG_ZRMOT_THR 0x21 // detection threshold for Zero Motion interrupt generation.
# define MPUREG_ZRMOT_DUR 0x22 // duration counter threshold for Zero Motion interrupt generation. The duration counter ticks at 16 Hz, therefore ZRMOT_DUR has a unit of 1 LSB = 64 ms.
# define MPUREG_FIFO_EN 0x23
# define MPUREG_INT_PIN_CFG 0x37
# define BIT_INT_RD_CLEAR 0x10 // clear the interrupt when any read occurs
2012-12-23 02:46:36 -04:00
# define BIT_LATCH_INT_EN 0x20 // latch data ready pin
2012-08-17 03:19:56 -03:00
# define MPUREG_INT_ENABLE 0x38
2012-07-28 02:14:43 -03:00
// bit definitions for MPUREG_INT_ENABLE
2012-08-17 03:19:56 -03:00
# define BIT_RAW_RDY_EN 0x01
# define BIT_DMP_INT_EN 0x02 // enabling this bit (DMP_INT_EN) also enables RAW_RDY_EN it seems
# define BIT_UNKNOWN_INT_EN 0x04
# define BIT_I2C_MST_INT_EN 0x08
# define BIT_FIFO_OFLOW_EN 0x10
# define BIT_ZMOT_EN 0x20
# define BIT_MOT_EN 0x40
# define BIT_FF_EN 0x80
# define MPUREG_INT_STATUS 0x3A
2012-07-28 02:14:43 -03:00
// bit definitions for MPUREG_INT_STATUS (same bit pattern as above because this register shows what interrupt actually fired)
2012-08-17 03:19:56 -03:00
# define BIT_RAW_RDY_INT 0x01
# define BIT_DMP_INT 0x02
# define BIT_UNKNOWN_INT 0x04
# define BIT_I2C_MST_INT 0x08
# define BIT_FIFO_OFLOW_INT 0x10
# define BIT_ZMOT_INT 0x20
# define BIT_MOT_INT 0x40
# define BIT_FF_INT 0x80
# define MPUREG_ACCEL_XOUT_H 0x3B
# define MPUREG_ACCEL_XOUT_L 0x3C
# define MPUREG_ACCEL_YOUT_H 0x3D
# define MPUREG_ACCEL_YOUT_L 0x3E
# define MPUREG_ACCEL_ZOUT_H 0x3F
# define MPUREG_ACCEL_ZOUT_L 0x40
# define MPUREG_TEMP_OUT_H 0x41
# define MPUREG_TEMP_OUT_L 0x42
# define MPUREG_GYRO_XOUT_H 0x43
# define MPUREG_GYRO_XOUT_L 0x44
# define MPUREG_GYRO_YOUT_H 0x45
# define MPUREG_GYRO_YOUT_L 0x46
# define MPUREG_GYRO_ZOUT_H 0x47
# define MPUREG_GYRO_ZOUT_L 0x48
# define MPUREG_USER_CTRL 0x6A
2012-07-28 02:14:43 -03:00
// bit definitions for MPUREG_USER_CTRL
2012-08-17 03:19:56 -03:00
# define BIT_USER_CTRL_SIG_COND_RESET 0x01 // resets signal paths and results registers for all sensors (gyros, accel, temp)
# define BIT_USER_CTRL_I2C_MST_RESET 0x02 // reset I2C Master (only applicable if I2C_MST_EN bit is set)
# define BIT_USER_CTRL_FIFO_RESET 0x04 // Reset (i.e. clear) FIFO buffer
# define BIT_USER_CTRL_DMP_RESET 0x08 // Reset DMP
2012-10-11 21:27:19 -03:00
# define BIT_USER_CTRL_I2C_IF_DIS 0x10 // Disable primary I2C interface and enable hal.spi->interface
2012-08-17 03:19:56 -03:00
# define BIT_USER_CTRL_I2C_MST_EN 0x20 // Enable MPU to act as the I2C Master to external slave sensors
# define BIT_USER_CTRL_FIFO_EN 0x40 // Enable FIFO operations
# define BIT_USER_CTRL_DMP_EN 0x80 // Enable DMP operations
# define MPUREG_PWR_MGMT_1 0x6B
# define BIT_PWR_MGMT_1_CLK_INTERNAL 0x00 // clock set to internal 8Mhz oscillator
# define BIT_PWR_MGMT_1_CLK_XGYRO 0x01 // PLL with X axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_YGYRO 0x02 // PLL with Y axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_ZGYRO 0x03 // PLL with Z axis gyroscope reference
# define BIT_PWR_MGMT_1_CLK_EXT32KHZ 0x04 // PLL with external 32.768kHz reference
# define BIT_PWR_MGMT_1_CLK_EXT19MHZ 0x05 // PLL with external 19.2MHz reference
# define BIT_PWR_MGMT_1_CLK_STOP 0x07 // Stops the clock and keeps the timing generator in reset
# define BIT_PWR_MGMT_1_TEMP_DIS 0x08 // disable temperature sensor
# define BIT_PWR_MGMT_1_CYCLE 0x20 // put sensor into cycle mode. cycles between sleep mode and waking up to take a single sample of data from active sensors at a rate determined by LP_WAKE_CTRL
# define BIT_PWR_MGMT_1_SLEEP 0x40 // put sensor into low power sleep mode
# define BIT_PWR_MGMT_1_DEVICE_RESET 0x80 // reset entire device
# define MPUREG_PWR_MGMT_2 0x6C // allows the user to configure the frequency of wake-ups in Accelerometer Only Low Power Mode
# define MPUREG_BANK_SEL 0x6D // DMP bank selection register (used to indirectly access DMP registers)
# define MPUREG_MEM_START_ADDR 0x6E // DMP memory start address (used to indirectly write to dmp memory)
# define MPUREG_MEM_R_W 0x6F // DMP related register
# define MPUREG_DMP_CFG_1 0x70 // DMP related register
# define MPUREG_DMP_CFG_2 0x71 // DMP related register
# define MPUREG_FIFO_COUNTH 0x72
# define MPUREG_FIFO_COUNTL 0x73
# define MPUREG_FIFO_R_W 0x74
# define MPUREG_WHOAMI 0x75
2011-12-25 05:37:50 -04:00
2011-11-12 23:20:25 -04:00
// Configuration bits MPU 3000 and MPU 6000 (not revised)?
2012-08-17 03:19:56 -03:00
# define BITS_DLPF_CFG_256HZ_NOLPF2 0x00
# define BITS_DLPF_CFG_188HZ 0x01
# define BITS_DLPF_CFG_98HZ 0x02
# define BITS_DLPF_CFG_42HZ 0x03
# define BITS_DLPF_CFG_20HZ 0x04
# define BITS_DLPF_CFG_10HZ 0x05
# define BITS_DLPF_CFG_5HZ 0x06
# define BITS_DLPF_CFG_2100HZ_NOLPF 0x07
# define BITS_DLPF_CFG_MASK 0x07
// Product ID Description for MPU6000
// high 4 bits low 4 bits
// Product Name Product Revision
# define MPU6000ES_REV_C4 0x14 // 0001 0100
# define MPU6000ES_REV_C5 0x15 // 0001 0101
# define MPU6000ES_REV_D6 0x16 // 0001 0110
# define MPU6000ES_REV_D7 0x17 // 0001 0111
# define MPU6000ES_REV_D8 0x18 // 0001 1000
# define MPU6000_REV_C4 0x54 // 0101 0100
# define MPU6000_REV_C5 0x55 // 0101 0101
# define MPU6000_REV_D6 0x56 // 0101 0110
# define MPU6000_REV_D7 0x57 // 0101 0111
# define MPU6000_REV_D8 0x58 // 0101 1000
# define MPU6000_REV_D9 0x59 // 0101 1001
2012-05-08 22:25:09 -03:00
2012-07-28 02:14:43 -03:00
2012-08-17 03:19:56 -03:00
/*
2012-11-19 11:37:42 -04:00
* RM - MPU - 6000 A - 00. pdf , page 33 , section 4.25 lists LSB sensitivity of
2012-08-17 03:19:56 -03:00
* gyro as 16.4 LSB / DPS at scale factor of + / - 2000 dps ( FS_SEL = = 3 )
2011-11-12 23:20:25 -04:00
*/
const float AP_InertialSensor_MPU6000 : : _gyro_scale = ( 0.0174532 / 16.4 ) ;
2012-05-08 22:25:09 -03:00
2011-11-12 23:20:25 -04:00
/* pch: I believe the accel and gyro indicies are correct
* but somone else should please confirm .
2013-01-07 13:29:29 -04:00
*
* jamesjb : Y and Z axes are flipped on the PX4FMU
2011-11-12 23:20:25 -04:00
*/
const uint8_t AP_InertialSensor_MPU6000 : : _gyro_data_index [ 3 ] = { 5 , 4 , 6 } ;
const uint8_t AP_InertialSensor_MPU6000 : : _accel_data_index [ 3 ] = { 1 , 0 , 2 } ;
2013-01-07 13:29:29 -04:00
const int8_t AP_InertialSensor_MPU6000 : : _gyro_data_sign [ 3 ] = { 1 , 1 , - 1 } ;
2012-08-17 03:19:56 -03:00
const int8_t AP_InertialSensor_MPU6000 : : _accel_data_sign [ 3 ] = { 1 , 1 , - 1 } ;
2011-11-12 23:20:25 -04:00
const uint8_t AP_InertialSensor_MPU6000 : : _temp_data_index = 3 ;
2012-11-05 00:27:03 -04:00
/*
2012-11-19 11:37:42 -04:00
* RM - MPU - 6000 A - 00. pdf , page 31 , section 4.23 lists LSB sensitivity of
2012-11-05 00:27:03 -04:00
* accel as 4096 LSB / mg at scale factor of + / - 8 g ( AFS_SEL = = 2 )
*
* See note below about accel scaling of engineering sample MPU6k
* variants however
*/
2013-09-28 03:29:24 -03:00
AP_InertialSensor_MPU6000 : : AP_InertialSensor_MPU6000 ( ) :
AP_InertialSensor ( ) ,
_mpu6000_product_id ( AP_PRODUCT_ID_NONE ) ,
_drdy_pin ( NULL ) ,
_temp ( 0 ) ,
_initialised ( false )
2011-11-12 23:20:25 -04:00
{
}
2012-10-11 21:27:19 -03:00
uint16_t AP_InertialSensor_MPU6000 : : _init_sensor ( Sample_rate sample_rate )
2011-11-12 23:20:25 -04:00
{
2012-11-05 00:27:03 -04:00
if ( _initialised ) return _mpu6000_product_id ;
2012-07-28 02:14:43 -03:00
_initialised = true ;
2013-01-10 18:12:19 -04:00
_spi = hal . spi - > device ( AP_HAL : : SPIDevice_MPU6000 ) ;
_spi_sem = _spi - > get_semaphore ( ) ;
/* Pin 70 defined especially to hook
up PE6 to the hal . gpio abstraction .
( It is not a valid pin under Arduino . ) */
_drdy_pin = hal . gpio - > channel ( 70 ) ;
2012-10-11 21:27:19 -03:00
hal . scheduler - > suspend_timer_procs ( ) ;
2013-01-10 18:12:19 -04:00
uint8_t tries = 0 ;
do {
bool success = hardware_init ( sample_rate ) ;
if ( success ) {
2013-02-06 19:23:08 -04:00
hal . scheduler - > delay ( 5 + 2 ) ;
2013-01-10 18:12:19 -04:00
if ( _data_ready ( ) ) {
break ;
} else {
hal . console - > println_P (
PSTR ( " MPU6000 startup failed: no data ready " ) ) ;
}
}
if ( tries + + > 5 ) {
hal . scheduler - > panic ( PSTR ( " PANIC: failed to boot MPU6000 5 times " ) ) ;
}
} while ( 1 ) ;
2012-10-11 21:27:19 -03:00
hal . scheduler - > resume_timer_procs ( ) ;
2013-01-10 18:12:19 -04:00
/* read the first lot of data.
* _read_data_transaction requires the spi semaphore to be taken by
* its caller . */
_last_sample_time_micros = hal . scheduler - > micros ( ) ;
_read_data_transaction ( ) ;
// start the timer process to read samples
2013-09-30 04:00:54 -03:00
hal . scheduler - > register_timer_process ( AP_HAL_MEMBERPROC ( & AP_InertialSensor_MPU6000 : : _poll_data ) ) ;
2013-01-10 18:12:19 -04:00
# if MPU6000_DEBUG
_dump_registers ( ) ;
# endif
2012-11-05 00:27:03 -04:00
return _mpu6000_product_id ;
2011-11-12 23:20:25 -04:00
}
// accumulation in ISR - must be read with interrupts disabled
// the sum of the values since last read
static volatile int32_t _sum [ 7 ] ;
// how many values we've accumulated since last read
static volatile uint16_t _count ;
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
2013-01-03 14:22:55 -04:00
void AP_InertialSensor_MPU6000 : : wait_for_sample ( )
2011-11-12 23:20:25 -04:00
{
2012-12-05 21:14:04 -04:00
uint32_t tstart = hal . scheduler - > micros ( ) ;
2013-09-26 21:33:08 -03:00
while ( sample_available ( ) = = false ) {
2013-01-03 14:22:55 -04:00
uint32_t now = hal . scheduler - > micros ( ) ;
uint32_t dt = now - tstart ;
if ( dt > 50000 ) {
2012-12-17 20:28:45 -04:00
hal . scheduler - > panic (
2012-12-05 21:14:04 -04:00
PSTR ( " PANIC: AP_InertialSensor_MPU6000::update "
" waited 50ms for data from interrupt " ) ) ;
}
}
2013-01-03 14:22:55 -04:00
}
bool AP_InertialSensor_MPU6000 : : update ( void )
{
int32_t sum [ 7 ] ;
float count_scale ;
Vector3f accel_scale = _accel_scale . get ( ) ;
// wait for at least 1 sample
wait_for_sample ( ) ;
2012-08-17 03:19:56 -03:00
2013-01-03 19:42:22 -04:00
// disable timer procs for mininum time
hal . scheduler - > suspend_timer_procs ( ) ;
2013-01-10 18:12:19 -04:00
/** ATOMIC SECTION w/r/t TIMER PROCESS */
{
for ( int i = 0 ; i < 7 ; i + + ) {
sum [ i ] = _sum [ i ] ;
_sum [ i ] = 0 ;
}
2013-01-03 14:22:55 -04:00
2013-01-11 06:17:21 -04:00
_num_samples = _count ;
2013-01-10 18:12:19 -04:00
_count = 0 ;
}
2013-01-03 19:42:22 -04:00
hal . scheduler - > resume_timer_procs ( ) ;
2011-11-12 23:20:25 -04:00
2013-01-10 14:42:24 -04:00
count_scale = 1.0f / _num_samples ;
2011-11-12 23:20:25 -04:00
2013-01-13 01:03:13 -04:00
_gyro = Vector3f ( _gyro_data_sign [ 0 ] * sum [ _gyro_data_index [ 0 ] ] ,
_gyro_data_sign [ 1 ] * sum [ _gyro_data_index [ 1 ] ] ,
_gyro_data_sign [ 2 ] * sum [ _gyro_data_index [ 2 ] ] ) ;
_gyro . rotate ( _board_orientation ) ;
_gyro * = _gyro_scale * count_scale ;
2012-12-18 07:44:44 -04:00
_gyro - = _gyro_offset ;
2012-11-20 03:25:36 -04:00
2013-01-13 01:03:13 -04:00
_accel = Vector3f ( _accel_data_sign [ 0 ] * sum [ _accel_data_index [ 0 ] ] ,
_accel_data_sign [ 1 ] * sum [ _accel_data_index [ 1 ] ] ,
_accel_data_sign [ 2 ] * sum [ _accel_data_index [ 2 ] ] ) ;
_accel . rotate ( _board_orientation ) ;
_accel * = count_scale * MPU6000_ACCEL_SCALE_1G ;
_accel . x * = accel_scale . x ;
_accel . y * = accel_scale . y ;
_accel . z * = accel_scale . z ;
2012-11-20 03:25:36 -04:00
_accel - = _accel_offset ;
2011-11-12 23:20:25 -04:00
2012-08-17 03:19:56 -03:00
_temp = _temp_to_celsius ( sum [ _temp_data_index ] * count_scale ) ;
2011-11-12 23:20:25 -04:00
2013-02-06 19:23:08 -04:00
if ( _last_filter_hz ! = _mpu6000_filter ) {
if ( _spi_sem - > take ( 10 ) ) {
_set_filter_register ( _mpu6000_filter , 0 ) ;
_spi_sem - > give ( ) ;
}
}
2012-03-03 03:31:31 -04:00
2013-02-06 19:23:08 -04:00
return true ;
2012-08-17 03:19:56 -03:00
}
2011-11-12 23:20:25 -04:00
/*================ HARDWARE FUNCTIONS ==================== */
2013-01-03 14:22:55 -04:00
/**
* Return true if the MPU6000 has new data available for reading .
*
* We use the data ready pin if it is available . Otherwise , read the
* status register .
*/
2013-01-03 15:48:01 -04:00
bool AP_InertialSensor_MPU6000 : : _data_ready ( )
2013-01-03 14:22:55 -04:00
{
if ( _drdy_pin ) {
return _drdy_pin - > read ( ) ! = 0 ;
2013-01-09 05:30:20 -04:00
}
2013-01-10 18:12:19 -04:00
if ( hal . scheduler - > in_timerprocess ( ) ) {
bool got = _spi_sem - > take_nonblocking ( ) ;
if ( got ) {
uint8_t status = _register_read ( MPUREG_INT_STATUS ) ;
_spi_sem - > give ( ) ;
return ( status & BIT_RAW_RDY_INT ) ! = 0 ;
} else {
return false ;
}
} else {
bool got = _spi_sem - > take ( 10 ) ;
if ( got ) {
uint8_t status = _register_read ( MPUREG_INT_STATUS ) ;
_spi_sem - > give ( ) ;
return ( status & BIT_RAW_RDY_INT ) ! = 0 ;
} else {
hal . scheduler - > panic (
PSTR ( " PANIC: AP_InertialSensor_MPU6000::_data_ready failed to "
" take SPI semaphore synchronously " ) ) ;
}
2013-01-03 14:22:55 -04:00
}
2013-01-09 05:30:20 -04:00
return false ;
2013-01-03 14:22:55 -04:00
}
/**
* Timer process to poll for new data from the MPU6000 .
*/
2013-09-28 03:29:24 -03:00
void AP_InertialSensor_MPU6000 : : _poll_data ( void )
2013-01-03 14:22:55 -04:00
{
2013-01-03 15:48:01 -04:00
if ( _data_ready ( ) ) {
2013-01-10 18:12:19 -04:00
if ( hal . scheduler - > in_timerprocess ( ) ) {
_read_data_from_timerprocess ( ) ;
} else {
/* Synchronous read - take semaphore */
bool got = _spi_sem - > take ( 10 ) ;
if ( got ) {
_last_sample_time_micros = hal . scheduler - > micros ( ) ;
_read_data_transaction ( ) ;
_spi_sem - > give ( ) ;
} else {
hal . scheduler - > panic (
PSTR ( " PANIC: AP_InertialSensor_MPU6000::_poll_data "
" failed to take SPI semaphore synchronously " ) ) ;
}
}
2013-01-03 14:22:55 -04:00
}
}
2011-12-25 05:37:50 -04:00
/*
2013-01-03 15:48:01 -04:00
* this is called from the _poll_data , in the timer process context .
* when the MPU6000 has new sensor data available and add it to _sum [ ] to
* ensure this is the case , these other devices must perform their spi reads
2012-12-21 18:16:31 -04:00
* after being called by the AP_TimerProcess .
2011-12-25 05:37:50 -04:00
*/
2013-01-03 15:48:01 -04:00
void AP_InertialSensor_MPU6000 : : _read_data_from_timerprocess ( )
2011-11-12 23:20:25 -04:00
{
2013-09-23 09:48:36 -03:00
if ( ! _spi_sem - > take_nonblocking ( ) ) {
/*
the semaphore being busy is an expected condition when the
2013-09-26 21:33:08 -03:00
mainline code is calling sample_available ( ) which will
2013-09-23 09:48:36 -03:00
grab the semaphore . We return now and rely on the mainline
code grabbing the latest sample .
*/
2013-01-03 15:48:01 -04:00
return ;
}
2013-01-06 19:33:14 -04:00
_last_sample_time_micros = hal . scheduler - > micros ( ) ;
2013-01-03 15:48:01 -04:00
_read_data_transaction ( ) ;
2012-12-05 21:14:04 -04:00
2013-01-03 15:48:01 -04:00
_spi_sem - > give ( ) ;
}
void AP_InertialSensor_MPU6000 : : _read_data_transaction ( ) {
2012-12-17 22:00:17 -04:00
/* one resister address followed by seven 2-byte registers */
uint8_t tx [ 15 ] ;
uint8_t rx [ 15 ] ;
memset ( tx , 0 , 15 ) ;
tx [ 0 ] = MPUREG_ACCEL_XOUT_H | 0x80 ;
_spi - > transaction ( tx , rx , 15 ) ;
2013-01-04 19:43:17 -04:00
2012-12-17 22:00:17 -04:00
for ( uint8_t i = 0 ; i < 7 ; i + + ) {
2013-01-04 19:43:17 -04:00
_sum [ i ] + = ( int16_t ) ( ( ( uint16_t ) rx [ 2 * i + 1 ] < < 8 ) | rx [ 2 * i + 2 ] ) ;
2012-12-17 22:00:17 -04:00
}
2011-12-25 05:37:50 -04:00
_count + + ;
if ( _count = = 0 ) {
// rollover - v unlikely
memset ( ( void * ) _sum , 0 , sizeof ( _sum ) ) ;
}
2013-01-03 15:48:01 -04:00
}
2012-10-11 21:27:19 -03:00
2013-01-03 15:48:01 -04:00
uint8_t AP_InertialSensor_MPU6000 : : _register_read ( uint8_t reg )
2011-11-12 23:20:25 -04:00
{
2012-08-17 03:19:56 -03:00
uint8_t addr = reg | 0x80 ; // Set most significant bit
2011-11-12 23:20:25 -04:00
2012-12-17 22:00:17 -04:00
uint8_t tx [ 2 ] ;
uint8_t rx [ 2 ] ;
2011-11-12 23:20:25 -04:00
2012-12-17 22:00:17 -04:00
tx [ 0 ] = addr ;
tx [ 1 ] = 0 ;
_spi - > transaction ( tx , rx , 2 ) ;
2011-11-12 23:20:25 -04:00
2012-12-17 22:00:17 -04:00
return rx [ 1 ] ;
2011-11-12 23:20:25 -04:00
}
void AP_InertialSensor_MPU6000 : : register_write ( uint8_t reg , uint8_t val )
{
2012-12-17 22:00:17 -04:00
uint8_t tx [ 2 ] ;
uint8_t rx [ 2 ] ;
tx [ 0 ] = reg ;
tx [ 1 ] = val ;
_spi - > transaction ( tx , rx , 2 ) ;
2011-11-12 23:20:25 -04:00
}
2013-02-06 19:23:08 -04:00
/*
set the DLPF filter frequency . Assumes caller has taken semaphore
*/
void AP_InertialSensor_MPU6000 : : _set_filter_register ( uint8_t filter_hz , uint8_t default_filter )
{
uint8_t filter = default_filter ;
// choose filtering frequency
switch ( filter_hz ) {
case 5 :
filter = BITS_DLPF_CFG_5HZ ;
break ;
case 10 :
filter = BITS_DLPF_CFG_10HZ ;
break ;
case 20 :
filter = BITS_DLPF_CFG_20HZ ;
break ;
case 42 :
filter = BITS_DLPF_CFG_42HZ ;
break ;
case 98 :
filter = BITS_DLPF_CFG_98HZ ;
break ;
}
if ( filter ! = 0 ) {
_last_filter_hz = filter_hz ;
register_write ( MPUREG_CONFIG , filter ) ;
}
}
2013-01-10 18:12:19 -04:00
bool AP_InertialSensor_MPU6000 : : hardware_init ( Sample_rate sample_rate )
2011-11-12 23:20:25 -04:00
{
2013-01-09 05:30:20 -04:00
if ( ! _spi_sem - > take ( 100 ) ) {
hal . scheduler - > panic ( PSTR ( " MPU6000: Unable to get semaphore " ) ) ;
}
2011-11-12 23:20:25 -04:00
// Chip reset
2012-12-27 06:28:41 -04:00
uint8_t tries ;
for ( tries = 0 ; tries < 5 ; tries + + ) {
register_write ( MPUREG_PWR_MGMT_1 , BIT_PWR_MGMT_1_DEVICE_RESET ) ;
hal . scheduler - > delay ( 100 ) ;
// Wake up device and select GyroZ clock. Note that the
// MPU6000 starts up in sleep mode, and it can take some time
// for it to come out of sleep
register_write ( MPUREG_PWR_MGMT_1 , BIT_PWR_MGMT_1_CLK_ZGYRO ) ;
hal . scheduler - > delay ( 5 ) ;
// check it has woken up
2013-01-03 15:48:01 -04:00
if ( _register_read ( MPUREG_PWR_MGMT_1 ) = = BIT_PWR_MGMT_1_CLK_ZGYRO ) {
2012-12-27 06:28:41 -04:00
break ;
}
2013-02-13 04:33:40 -04:00
# if MPU6000_DEBUG
_dump_registers ( ) ;
# endif
2012-12-27 06:28:41 -04:00
}
if ( tries = = 5 ) {
2013-01-10 18:12:19 -04:00
hal . console - > println_P ( PSTR ( " Failed to boot MPU6000 5 times " ) ) ;
_spi_sem - > give ( ) ;
return false ;
2012-12-27 06:28:41 -04:00
}
2012-07-28 02:14:43 -03:00
2012-08-17 03:19:56 -03:00
register_write ( MPUREG_PWR_MGMT_2 , 0x00 ) ; // only used for wake-up in accelerometer only low power mode
2012-10-11 21:27:19 -03:00
hal . scheduler - > delay ( 1 ) ;
2012-07-28 02:14:43 -03:00
2011-11-12 23:20:25 -04:00
// Disable I2C bus (recommended on datasheet)
2012-07-28 02:14:43 -03:00
register_write ( MPUREG_USER_CTRL , BIT_USER_CTRL_I2C_IF_DIS ) ;
2012-10-11 21:27:19 -03:00
hal . scheduler - > delay ( 1 ) ;
2012-11-29 07:56:13 -04:00
2013-02-06 19:23:08 -04:00
uint8_t default_filter ;
2012-11-29 07:56:13 -04:00
// sample rate and filtering
// to minimise the effects of aliasing we choose a filter
// that is less than half of the sample rate
switch ( sample_rate ) {
case RATE_50HZ :
2013-02-06 19:23:08 -04:00
// this is used for plane and rover, where noise resistance is
// more important than update rate. Tests on an aerobatic plane
// show that 10Hz is fine, and makes it very noise resistant
default_filter = BITS_DLPF_CFG_10HZ ;
_sample_shift = 2 ;
2012-11-29 07:56:13 -04:00
break ;
case RATE_100HZ :
2013-03-01 06:35:34 -04:00
default_filter = BITS_DLPF_CFG_20HZ ;
2013-02-06 19:23:08 -04:00
_sample_shift = 1 ;
2012-11-29 07:56:13 -04:00
break ;
case RATE_200HZ :
default :
2013-03-01 06:35:34 -04:00
default_filter = BITS_DLPF_CFG_20HZ ;
2013-02-06 19:23:08 -04:00
_sample_shift = 0 ;
2012-11-29 16:15:12 -04:00
break ;
}
2012-11-29 07:56:13 -04:00
2013-02-06 19:23:08 -04:00
_set_filter_register ( _mpu6000_filter , default_filter ) ;
2012-11-29 07:56:13 -04:00
2013-02-06 19:23:08 -04:00
// set sample rate to 200Hz, and use _sample_divider to give
// the requested rate to the application
register_write ( MPUREG_SMPLRT_DIV , MPUREG_SMPLRT_200HZ ) ;
2012-10-11 21:27:19 -03:00
hal . scheduler - > delay ( 1 ) ;
2012-11-29 07:56:13 -04:00
2012-07-28 02:14:43 -03:00
register_write ( MPUREG_GYRO_CONFIG , BITS_GYRO_FS_2000DPS ) ; // Gyro scale 2000º/s
2012-10-11 21:27:19 -03:00
hal . scheduler - > delay ( 1 ) ;
2012-08-17 03:19:56 -03:00
2012-12-23 16:17:03 -04:00
// read the product ID rev c has 1/2 the sensitivity of rev d
2013-01-03 15:48:01 -04:00
_mpu6000_product_id = _register_read ( MPUREG_PRODUCT_ID ) ;
2012-11-05 00:27:03 -04:00
//Serial.printf("Product_ID= 0x%x\n", (unsigned) _mpu6000_product_id);
2012-08-17 03:19:56 -03:00
2012-11-05 00:27:03 -04:00
if ( ( _mpu6000_product_id = = MPU6000ES_REV_C4 ) | | ( _mpu6000_product_id = = MPU6000ES_REV_C5 ) | |
( _mpu6000_product_id = = MPU6000_REV_C4 ) | | ( _mpu6000_product_id = = MPU6000_REV_C5 ) ) {
2012-08-17 03:19:56 -03:00
// Accel scale 8g (4096 LSB/g)
// Rev C has different scaling than rev D
register_write ( MPUREG_ACCEL_CONFIG , 1 < < 3 ) ;
} else {
// Accel scale 8g (4096 LSB/g)
register_write ( MPUREG_ACCEL_CONFIG , 2 < < 3 ) ;
}
2012-10-11 21:27:19 -03:00
hal . scheduler - > delay ( 1 ) ;
2011-12-25 05:37:50 -04:00
2012-12-23 16:17:03 -04:00
// configure interrupt to fire when new data arrives
register_write ( MPUREG_INT_ENABLE , BIT_RAW_RDY_EN ) ;
2012-10-11 21:27:19 -03:00
hal . scheduler - > delay ( 1 ) ;
2012-12-23 02:46:36 -04:00
// clear interrupt on any read, and hold the data ready pin high
// until we clear the interrupt
2013-01-10 18:12:19 -04:00
register_write ( MPUREG_INT_PIN_CFG , BIT_INT_RD_CLEAR | BIT_LATCH_INT_EN ) ;
2012-10-11 21:27:19 -03:00
hal . scheduler - > delay ( 1 ) ;
2011-11-12 23:20:25 -04:00
2013-01-09 05:30:20 -04:00
_spi_sem - > give ( ) ;
2013-01-10 18:12:19 -04:00
return true ;
2011-11-12 23:20:25 -04:00
}
float AP_InertialSensor_MPU6000 : : _temp_to_celsius ( uint16_t regval )
{
/* TODO */
return 20.0 ;
}
2012-03-08 03:10:27 -04:00
// return the MPU6k gyro drift rate in radian/s/s
// note that this is much better than the oilpan gyros
float AP_InertialSensor_MPU6000 : : get_gyro_drift_rate ( void )
{
// 0.5 degrees/second/minute
return ToRad ( 0.5 / 60 ) ;
}
2012-07-28 02:14:43 -03:00
2013-09-26 21:33:08 -03:00
// return true if a sample is available
bool AP_InertialSensor_MPU6000 : : sample_available ( )
2012-08-30 04:48:36 -03:00
{
2013-09-28 03:29:24 -03:00
_poll_data ( ) ;
2013-09-26 21:33:08 -03:00
return ( _count > > _sample_shift ) > 0 ;
2012-08-30 04:48:36 -03:00
}
2012-12-27 06:28:41 -04:00
# if MPU6000_DEBUG
// dump all config registers - used for debug
void AP_InertialSensor_MPU6000 : : _dump_registers ( void )
{
2013-02-13 04:33:40 -04:00
hal . console - > println_P ( PSTR ( " MPU6000 registers " ) ) ;
for ( uint8_t reg = MPUREG_PRODUCT_ID ; reg < = 108 ; reg + + ) {
2013-01-03 15:48:01 -04:00
uint8_t v = _register_read ( reg ) ;
2012-12-27 06:28:41 -04:00
hal . console - > printf_P ( PSTR ( " %02x:%02x " ) , ( unsigned ) reg , ( unsigned ) v ) ;
2013-02-13 04:33:40 -04:00
if ( ( reg - ( MPUREG_PRODUCT_ID - 1 ) ) % 16 = = 0 ) {
2012-12-27 06:28:41 -04:00
hal . console - > println ( ) ;
}
}
hal . console - > println ( ) ;
}
# endif
2012-11-05 00:27:03 -04:00
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
2013-01-11 06:17:21 -04:00
float AP_InertialSensor_MPU6000 : : get_delta_time ( )
2012-08-30 04:48:36 -03:00
{
2013-02-06 19:23:08 -04:00
// the sensor runs at 200Hz
return 0.005 * _num_samples ;
2013-09-28 03:29:24 -03:00
}