ardupilot/libraries/AP_IMU/AP_IMU.cpp

171 lines
4.8 KiB
C++
Raw Normal View History

#include <AP_IMU.h>
#define A_LED_PIN 37 //37 = A, 35 = C
#define C_LED_PIN 35
// ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step
// ADXL335 Sensitivity(from datasheet) => 330mV/g, 0.8mV/ADC step => 330/0.8 = 412
// Tested value : 418
#define GRAVITY 418 //this equivalent to 1G in the raw data coming from the accelerometer
#define accel_scale(x) (x/GRAVITY)//Scaling the raw data of the accel to actual acceleration in meters per second squared
#define ToRad(x) (x*0.01745329252) // *pi/180
#define ToDeg(x) (x*57.2957795131) // *180/pi
// IDG500 Sensitivity (from datasheet) => 2.0mV/º/s, 0.8mV/ADC step => 0.8/3.33 = 0.4
// Tested values : 0.4026, ?, 0.4192
#define _gyro_gain_x 0.4 //X axis Gyro gain
#define _gyro_gain_y 0.41 //Y axis Gyro gain
#define _gyro_gain_z 0.41 //Z axis Gyro
#define ADC_CONSTRAINT 900
// Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
const uint8_t AP_IMU::_sensors[6] = {1,2,0,4,5,6}; // For ArduPilot Mega Sensor Shield Hardware
const int AP_IMU::_sensor_signs[] = { 1, -1, -1,
1, -1, -1};
// Temp compensation curve constants
// These must be produced by measuring data and curve fitting
// [X/Y/Z gyro][A/B/C or 0 order/1st order/2nd order constants]
const float AP_IMU::_gyro_temp_curve[3][3] = {
{1665,0,0},
{1665,0,0},
{1665,0,0}
}; // To Do - make additional constructors to pass this in.
// Constructors ////////////////////////////////////////////////////////////////
AP_IMU::AP_IMU(void)
{
}
/**************************************************/
void
AP_IMU::quick_init(void)
{
// NOTE *** Need to addd code to retrieve values from EEPROM
}
/**************************************************/
void
AP_IMU::init(void)
{
float temp;
int flashcount = 0;
int tc_temp = APM_ADC.Ch(_gyro_temp_ch);
delay(500);
for(int c = 0; c < 200; c++)
{
digitalWrite(A_LED_PIN, LOW);
digitalWrite(C_LED_PIN, HIGH);
delay(20);
for (int i = 0; i < 6; i++)
_adc_in[i] = APM_ADC.Ch(_sensors[i]);
digitalWrite(C_LED_PIN, LOW);
digitalWrite(A_LED_PIN, HIGH);
delay(20);
}
for(int i = 0; i < 200; i++){ // We take some readings...
for (int j = 0; j < 6; j++) {
_adc_in[j] = APM_ADC.Ch(_sensors[j]);
if (j < 3) {
_adc_in[j] -= _gyro_temp_comp(j, tc_temp); // Subtract temp compensated typical gyro bias
} else {
_adc_in[j] -= 2025;
}
_adc_offset[j] = _adc_offset[j] * 0.9 + _adc_in[j] * 0.1;
}
delay(20);
if(flashcount == 5) {
digitalWrite(A_LED_PIN, LOW);
digitalWrite(C_LED_PIN, HIGH);
}
if(flashcount >= 10) {
flashcount = 0;
digitalWrite(C_LED_PIN, LOW);
digitalWrite(A_LED_PIN, HIGH);
}
flashcount++;
}
_adc_offset[5] += GRAVITY * _sensor_signs[5];
// NOTE *** Need to addd code to save values to EEPROM
}
/**************************************************/
// Returns the temperature compensated raw gyro value
//---------------------------------------------------
float
AP_IMU::_gyro_temp_comp(int i, int temp) const
{
// We use a 2nd order curve of the form Gtc = A + B * Graw + C * (Graw)**2
//------------------------------------------------------------------------
return _gyro_temp_curve[i][0] + _gyro_temp_curve[i][1] * temp + _gyro_temp_curve[i][2] * temp * temp;
}
/**************************************************/
Vector3f
AP_IMU::get_gyro(void)
{
int tc_temp = APM_ADC.Ch(_gyro_temp_ch);
for (int i = 0; i < 3; i++) {
_adc_in[i] = APM_ADC.Ch(_sensors[i]);
_adc_in[i] -= _gyro_temp_comp(i,tc_temp); // Subtract temp compensated typical gyro bias
if (_sensor_signs[i] < 0)
_adc_in[i] = (_adc_offset[i] - _adc_in[i]);
else
_adc_in[i] = (_adc_in[i] - _adc_offset[i]);
if (abs(_adc_in[i]) > ADC_CONSTRAINT) {
adc_constraints++; // We keep track of the number of times
_adc_in[i] = constrain(_adc_in[i], -ADC_CONSTRAINT, ADC_CONSTRAINT); // Throw out nonsensical values
}
}
_gyro_vector.x = ToRad(_gyro_gain_x) * _adc_in[0];
_gyro_vector.y = ToRad(_gyro_gain_y) * _adc_in[1];
_gyro_vector.z = ToRad(_gyro_gain_z) * _adc_in[2];
return _gyro_vector;
}
/**************************************************/
Vector3f
AP_IMU::get_accel(void)
{
for (int i = 3; i < 6; i++) {
_adc_in[i] = APM_ADC.Ch(_sensors[i]);
_adc_in[i] -= 2025; // Subtract typical accel bias
if (_sensor_signs[i] < 0)
_adc_in[i] = (_adc_offset[i] - _adc_in[i]);
else
_adc_in[i] = (_adc_in[i] - _adc_offset[i]);
if (abs(_adc_in[i]) > ADC_CONSTRAINT) {
adc_constraints++; // We keep track of the number of times
_adc_in[i] = constrain(_adc_in[i], -ADC_CONSTRAINT, ADC_CONSTRAINT); // Throw out nonsensical values
}
}
_accel_vector.x = accel_scale(_adc_in[3]);
_accel_vector.y = accel_scale(_adc_in[4]);
_accel_vector.z = accel_scale(_adc_in[5]);
return _accel_vector;
}