5
0
mirror of https://github.com/ArduPilot/ardupilot synced 2025-01-27 02:58:31 -04:00
ardupilot/archive/ArducopterNG/Attitude.pde

177 lines
5.5 KiB
Plaintext
Raw Normal View History

/*
www.ArduCopter.com - www.DIYDrones.com
Copyright (c) 2010. All rights reserved.
An Open Source Arduino based multicopter.
File : Attitude.pde
Version : v1.0, Aug 27, 2010
Author(s): ArduCopter Team
Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz,
Jani Hirvinen, Ken McEwans, Roberto Navoni,
Sandro Benigno, Chris Anderson
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
* ************************************************************** *
ChangeLog:
* ************************************************************** *
TODO:
* ************************************************************** */
/* ************************************************************ */
//////////////////////////////////////////////////
// Function : Attitude_control_v3()
//
// Stable flight mode main algoritms
//
// Parameters:
// - none
//
// Returns : - none
//
// Alters :
// err_roll, roll_rate
//
// Relies :
// Radio input, Gyro
//
/* ************************************************************ */
// STABLE MODE
// PI absolute angle control driving a P rate control
// Input : desired Roll, Pitch and Yaw absolute angles. Output : Motor commands
void Attitude_control_v3(int command_roll, int command_pitch, int command_yaw)
{
#define MAX_CONTROL_OUTPUT 250
float stable_roll,stable_pitch,stable_yaw;
// ROLL CONTROL
err_roll = command_roll - ToDeg(roll);
err_roll = constrain(err_roll,-25,25); // to limit max roll command...
roll_I += err_roll*G_Dt;
roll_I = constrain(roll_I,-20,20);
// PID absolute angle control
stable_roll = KP_QUAD_ROLL*err_roll + KI_QUAD_ROLL*roll_I;
// PD rate control (we use also the bias corrected gyro rates)
err_roll = stable_roll - ToDeg(Omega[0]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
control_roll = STABLE_MODE_KP_RATE_ROLL*err_roll;
control_roll = constrain(control_roll,-MAX_CONTROL_OUTPUT,MAX_CONTROL_OUTPUT);
// PITCH CONTROL
err_pitch = command_pitch - ToDeg(pitch);
err_pitch = constrain(err_pitch,-25,25); // to limit max pitch command...
pitch_I += err_pitch*G_Dt;
pitch_I = constrain(pitch_I,-20,20);
// PID absolute angle control
stable_pitch = KP_QUAD_PITCH*err_pitch + KI_QUAD_PITCH*pitch_I;
// P rate control (we use also the bias corrected gyro rates)
err_pitch = stable_pitch - ToDeg(Omega[1]);
control_pitch = STABLE_MODE_KP_RATE_PITCH*err_pitch;
control_pitch = constrain(control_pitch,-MAX_CONTROL_OUTPUT,MAX_CONTROL_OUTPUT);
// YAW CONTROL
err_yaw = command_yaw - ToDeg(yaw);
if (err_yaw > 180) // Normalize to -180,180
err_yaw -= 360;
else if(err_yaw < -180)
err_yaw += 360;
err_yaw = constrain(err_yaw,-60,60); // to limit max yaw command...
yaw_I += err_yaw*G_Dt;
yaw_I = constrain(yaw_I,-20,20);
// PID absoulte angle control
stable_yaw = KP_QUAD_YAW*err_yaw + KI_QUAD_YAW*yaw_I;
// PD rate control (we use also the bias corrected gyro rates)
err_yaw = stable_yaw - ToDeg(Omega[2]);
control_yaw = STABLE_MODE_KP_RATE_YAW*err_yaw;
control_yaw = constrain(control_yaw,-MAX_CONTROL_OUTPUT,MAX_CONTROL_OUTPUT);
}
// ACRO MODE
//////////////////////////////////////////////////
// Function : Rate_control()
//
// Acro mode main algoritms
//
// Parameters:
// - none
//
// Returns : - none
//
// Alters :
// err_roll, roll_rate
//
// Relies :
// Radio input, Gyro
//
// ACRO MODE
void Rate_control_v2()
{
static float previousRollRate, previousPitchRate, previousYawRate;
float currentRollRate, currentPitchRate, currentYawRate;
// ROLL CONTROL
currentRollRate = ToDeg(Omega[0]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
err_roll = ((ch_roll- roll_mid) * xmitFactor) - currentRollRate;
roll_I += err_roll*G_Dt;
roll_I = constrain(roll_I,-20,20);
roll_D = (currentRollRate - previousRollRate)/G_Dt;
previousRollRate = currentRollRate;
// PID control
control_roll = Kp_RateRoll*err_roll + Kd_RateRoll*roll_D + Ki_RateRoll*roll_I;
// PITCH CONTROL
currentPitchRate = ToDeg(Omega[1]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected
err_pitch = ((ch_pitch - pitch_mid) * xmitFactor) - currentPitchRate;
pitch_I += err_pitch*G_Dt;
pitch_I = constrain(pitch_I,-20,20);
pitch_D = (currentPitchRate - previousPitchRate)/G_Dt;
previousPitchRate = currentPitchRate;
// PID control
control_pitch = Kp_RatePitch*err_pitch + Kd_RatePitch*pitch_D + Ki_RatePitch*pitch_I;
// YAW CONTROL
currentYawRate = ToDeg(Omega[2]); // Omega[] is the raw gyro reading plus Omega_I, so it´s bias corrected;
err_yaw = ((ch_yaw - yaw_mid)* xmitFactor) - currentYawRate;
yaw_I += err_yaw*G_Dt;
yaw_I = constrain(yaw_I,-20,20);
yaw_D = (currentYawRate - previousYawRate)/G_Dt;
previousYawRate = currentYawRate;
// PID control
control_yaw = Kp_RateYaw*err_yaw + Kd_RateYaw*yaw_D + Ki_RateYaw*yaw_I;
}