2012-04-30 04:17:14 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/*
ArduPlane parameter definitions
This firmware is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
2012-08-06 22:24:20 -03:00
#define GSCALAR(v, name, def) { g.v.vtype, name, Parameters::k_param_ ## v, &g.v, {def_value:def} }
#define GGROUP(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &g.v, {group_info:class::var_info} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &v, {group_info:class::var_info} }
const AP_Param::Info var_info[] PROGMEM = {
2013-01-17 16:56:32 -04:00
GSCALAR(format_version, "FORMAT_VERSION", 1),
2012-08-06 22:24:20 -03:00
GSCALAR(software_type, "SYSID_SW_TYPE", Parameters::k_software_type),
2013-02-08 06:17:54 -04:00
// misc
GSCALAR(log_bitmask, "LOG_BITMASK", DEFAULT_LOG_BITMASK),
GSCALAR(num_resets, "SYS_NUM_RESETS", 0),
GSCALAR(reset_switch_chan, "RST_SWITCH_CH", 0),
// @Param: RSSI_PIN
// @DisplayName: Receiver RSSI sensing pin
// @Description: This selects an analog pin for the receiver RSSI voltage. It assumes the voltage is 5V for max rssi, 0V for minimum
// @Values: -1:Disabled, 0:A0, 1:A1, 13:A13
// @User: Standard
GSCALAR(rssi_pin, "RSSI_PIN", -1),
// @Param: BATT_VOLT_PIN
// @DisplayName: Battery Voltage sensing pin
// @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13.
// @Values: -1:Disabled, 0:A0, 1:A1, 13:A13
// @User: Standard
GSCALAR(battery_volt_pin, "BATT_VOLT_PIN", 1),
// @Param: BATT_CURR_PIN
// @DisplayName: Battery Current sensing pin
// @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13.
// @Values: -1:Disabled, 1:A1, 2:A2, 12:A12
// @User: Standard
GSCALAR(battery_curr_pin, "BATT_CURR_PIN", 2),
// @Param: SYSID_THIS_MAV
// @DisplayName: MAVLink system ID
// @Description: ID used in MAVLink protocol to identify this vehicle
// @User: Advanced
2012-08-06 22:24:20 -03:00
GSCALAR(sysid_this_mav, "SYSID_THISMAV", MAV_SYSTEM_ID),
2013-02-08 06:17:54 -04:00
// @Param: SYSID_MYGCS
// @DisplayName: MAVLink ground station ID
// @Description: ID used in MAVLink protocol to identify the controlling ground station
// @User: Advanced
2012-08-06 22:24:20 -03:00
GSCALAR(sysid_my_gcs, "SYSID_MYGCS", 255),
2012-11-27 20:42:51 -04:00
2013-01-17 16:56:32 -04:00
// @Param: SERIAL0_BAUD
2013-02-21 17:38:13 -04:00
// @DisplayName: USB Console Baud Rate
2013-01-17 16:56:32 -04:00
// @Description: The baud rate used on the first serial port
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
GSCALAR(serial0_baud, "SERIAL0_BAUD", SERIAL0_BAUD/1000),
2012-11-27 20:42:51 -04:00
// @Param: SERIAL3_BAUD
// @DisplayName: Telemetry Baud Rate
// @Description: The baud rate used on the telemetry port
// @Values: 1:1200,2:2400,4:4800,9:9600,19:19200,38:38400,57:57600,111:111100,115:115200
// @User: Standard
2012-08-06 22:24:20 -03:00
GSCALAR(serial3_baud, "SERIAL3_BAUD", SERIAL3_BAUD/1000),
2012-11-27 20:42:51 -04:00
// @Param: TELEM_DELAY
// @DisplayName: Telemetry startup delay
// @Description: The amount of time (in seconds) to delay radio telemetry to prevent an Xbee bricking on power up
// @User: Standard
// @Units: seconds
// @Range: 0 10
// @Increment: 1
2012-08-29 20:36:18 -03:00
GSCALAR(telem_delay, "TELEM_DELAY", 0),
2012-11-27 20:42:51 -04:00
2013-02-08 06:17:54 -04:00
// @Param: MAG_ENABLED
// @DisplayName: Magnetometer (compass) enabled
// @Description: This should be set to 1 if a compass is installed
// @User: Standard
2012-11-27 20:42:51 -04:00
// @Values: 0:Disabled,1:Enabled
2013-02-08 06:17:54 -04:00
GSCALAR(compass_enabled, "MAG_ENABLE", MAGNETOMETER),
// @Param: BATT_MONITOR
// @DisplayName: Battery monitoring
// @Description: Controls enabling monitoring of the battery's voltage and current
// @Values: 0:Disabled,3:Voltage Only,4:Voltage and Current
// @User: Standard
GSCALAR(battery_monitoring, "BATT_MONITOR", DISABLED),
// @Param: VOLT_DIVIDER
// @DisplayName: Voltage Divider
// @Description: Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery's voltage (pin voltage * INPUT_VOLTS/1024 * VOLT_DIVIDER)
2012-11-27 20:42:51 -04:00
// @User: Advanced
2013-02-08 06:17:54 -04:00
GSCALAR(volt_div_ratio, "VOLT_DIVIDER", VOLT_DIV_RATIO),
// @Param: AMP_PER_VOLT
// @DisplayName: Current Amps per volt
// @Description: Used to convert the voltage on the current sensing pin (BATT_CURR_PIN) to the actual current being consumed in amps (curr pin voltage * INPUT_VOLTS/1024 * AMP_PER_VOLT )
// @User: Advanced
GSCALAR(curr_amp_per_volt, "AMP_PER_VOLT", CURR_AMP_PER_VOLT),
// @Param: INPUT_VOLTS
// @DisplayName: Max internal voltage of the battery voltage and current sensing pins
// @Description: Used to convert the voltage read in on the voltage and current pins for battery monitoring. Normally 5 meaning 5 volts.
// @User: Advanced
GSCALAR(input_voltage, "INPUT_VOLTS", INPUT_VOLTAGE),
// @Param: BATT_CAPACITY
// @DisplayName: Battery Capacity
// @Description: Battery capacity in milliamp-hours (mAh)
// @Units: mAh
GSCALAR(pack_capacity, "BATT_CAPACITY", HIGH_DISCHARGE),
2012-11-27 20:42:51 -04:00
// @Param: XTRK_GAIN_SC
// @DisplayName: Crosstrack Gain
2013-02-07 18:21:22 -04:00
// @Description: This controls how hard the Rover tries to follow the lines between waypoints, as opposed to driving directly to the next waypoint. The value is the scale between distance off the line and angle to meet the line (in Degrees * 100)
2012-11-27 20:42:51 -04:00
// @Range: 0 2000
// @Increment: 1
// @User: Standard
2012-08-06 22:24:20 -03:00
GSCALAR(crosstrack_gain, "XTRK_GAIN_SC", XTRACK_GAIN_SCALED),
2012-11-27 20:42:51 -04:00
// @Param: XTRK_ANGLE_CD
// @DisplayName: Crosstrack Entry Angle
// @Description: Maximum angle used to correct for track following.
// @Units: centi-Degrees
// @Range: 0 9000
// @Increment: 1
// @User: Standard
2012-08-06 22:24:20 -03:00
GSCALAR(crosstrack_entry_angle, "XTRK_ANGLE_CD", XTRACK_ENTRY_ANGLE_CENTIDEGREE),
2012-04-30 04:17:14 -03:00
2013-02-08 06:17:54 -04:00
// @Param: CRUISE_SPEED
2013-02-21 17:38:13 -04:00
// @DisplayName: Target cruise speed in auto modes
2013-02-08 06:17:54 -04:00
// @Description: The target speed in auto missions.
// @Units: m/s
// @Range: 0 100
2013-02-07 18:21:22 -04:00
// @Increment: 0.1
// @User: Standard
2013-02-08 06:17:54 -04:00
GSCALAR(speed_cruise, "CRUISE_SPEED", 5),
2013-02-21 17:38:13 -04:00
// @Param: SPEED_TURN_GAIN
// @DisplayName: Target speed reduction while turning
// @Description: The percentage to reduce the throttle while turning. If this is 100% then the target speed is not reduced while turning. If this is 50% then the target speed is reduced in proportion to the turn rate, with a reduction of 50% when the steering is maximally deflected.
// @Units: percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
GSCALAR(speed_turn_gain, "SPEED_TURN_GAIN", 50),
// @Param: SPEED_TURN_DIST
// @DisplayName: Distance to turn to start reducing speed
// @Description: The distance to the next turn at which the rover reduces its target speed by the SPEED_TURN_GAIN
// @Units: meters
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
GSCALAR(speed_turn_dist, "SPEED_TURN_DIST", 2.0f),
2013-02-08 06:17:54 -04:00
// @Param: CH7_OPTION
// @DisplayName: Channel 7 option
// @Description: What to do use channel 7 for
// @Values: 0:Nothing,1:LearnWaypoint
// @User: Standard
GSCALAR(ch7_option, "CH7_OPTION", CH7_OPTION),
GGROUP(channel_steer, "RC1_", RC_Channel),
GGROUP(rc_2, "RC2_", RC_Channel_aux),
GGROUP(channel_throttle, "RC3_", RC_Channel),
GGROUP(rc_4, "RC4_", RC_Channel_aux),
GGROUP(rc_5, "RC5_", RC_Channel_aux),
GGROUP(rc_6, "RC6_", RC_Channel_aux),
GGROUP(rc_7, "RC7_", RC_Channel_aux),
GGROUP(rc_8, "RC8_", RC_Channel_aux),
2012-04-30 04:17:14 -03:00
2012-11-27 20:42:51 -04:00
// @Param: THR_MIN
// @DisplayName: Minimum Throttle
2013-02-07 18:21:22 -04:00
// @Description: The minimum throttle setting to which the autopilot will apply. This is mostly useful for rovers with internal combustion motors, to prevent the motor from cutting out in auto mode.
2012-11-27 20:42:51 -04:00
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
2012-08-06 22:24:20 -03:00
GSCALAR(throttle_min, "THR_MIN", THROTTLE_MIN),
2012-11-27 20:42:51 -04:00
// @Param: THR_MAX
// @DisplayName: Maximum Throttle
2013-02-21 17:38:13 -04:00
// @Description: The maximum throttle setting to which the autopilot will apply. This can be used to prevent overheating a ESC or motor on an electric rover.
2012-11-27 20:42:51 -04:00
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
2012-08-06 22:24:20 -03:00
GSCALAR(throttle_max, "THR_MAX", THROTTLE_MAX),
2012-11-27 20:42:51 -04:00
2013-02-08 06:17:54 -04:00
// @Param: CRUISE_THROTTLE
// @DisplayName: Base throttle percentage in auto
2013-02-21 17:38:13 -04:00
// @Description: The base throttle percentage to use in auto mode. The CRUISE_SPEED parameter controls the target speed, but the rover starts with the CRUISE_THROTTLE setting as the initial estimate for how much throttle is needed to achieve that speed. It then adjusts the throttle based on how fast the rover is actually going.
2013-02-08 06:17:54 -04:00
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
GSCALAR(throttle_cruise, "CRUISE_THROTTLE", 50),
2012-11-27 20:42:51 -04:00
// @Param: THR_SLEWRATE
2012-12-03 20:38:29 -04:00
// @DisplayName: Throttle slew rate
2013-02-08 06:17:54 -04:00
// @Description: maximum percentage change in throttle per second. A setting of 10 means to not change the throttle by more than 10% of the full throttle range in one second. A value of zero means no limit.
2012-11-27 20:42:51 -04:00
// @Units: Percent
// @Range: 0 100
// @Increment: 1
// @User: Standard
2013-02-07 18:21:22 -04:00
GSCALAR(throttle_slewrate, "THR_SLEWRATE", 0),
2012-11-27 20:42:51 -04:00
2013-02-08 06:17:54 -04:00
// @Param: FS_ACTION
// @DisplayName: Failsafe Action
// @Description: What to do on a failsafe event
// @Values: 0:Nothing,1:RTL,2:STOP
// @User: Standard
GSCALAR(fs_action, "FS_ACTION", 0),
// @Param: FS_TIMEOUT
// @DisplayName: Failsafe timeout
// @Description: How long a failsafe event need to happen for before we trigger the failsafe action
// @Units: seconds
// @User: Standard
GSCALAR(fs_timeout, "FS_TIMEOUT", 10),
// @Param: FS_THR_ENABLE
2012-11-27 20:42:51 -04:00
// @DisplayName: Throttle Failsafe Enable
2013-02-07 18:21:22 -04:00
// @Description: The throttle failsafe allows you to configure a software failsafe activated by a setting on the throttle input channel to a low value. This can be used to detect the RC transmitter going out of range.
2012-11-27 20:42:51 -04:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2013-02-08 06:17:54 -04:00
GSCALAR(fs_throttle_enabled, "FS_THR_ENABLE", 0),
2012-11-27 20:42:51 -04:00
2013-02-08 06:17:54 -04:00
// @Param: FS_THR_VALUE
2012-11-27 20:42:51 -04:00
// @DisplayName: Throttle Failsafe Value
2013-02-07 18:21:22 -04:00
// @Description: The PWM level on channel 3 below which throttle sailsafe triggers.
2012-11-27 20:42:51 -04:00
// @User: Standard
2013-02-08 06:17:54 -04:00
GSCALAR(fs_throttle_value, "FS_THR_VALUE", 900),
2012-11-27 20:42:51 -04:00
2013-02-07 18:21:22 -04:00
// @Param: FS_GCS_ENABLE
2012-11-27 20:42:51 -04:00
// @DisplayName: GCS failsafe enable
2013-02-07 18:21:22 -04:00
// @Description: Enable ground control station telemetry failsafe
2012-11-27 20:42:51 -04:00
// @Values: 0:Disabled,1:Enabled
// @User: Standard
2013-02-08 06:17:54 -04:00
GSCALAR(fs_gcs_enabled, "FS_GCS_ENABLE", 0),
// @Param: SONAR_ENABLE
// @DisplayName: Enable Sonar
// @Description: Setting this to Enabled(1) will enable the sonar. Setting this to Disabled(0) will disable the sonar
// @Values: 0:Disabled,1:Enabled
// @User: Standard
GSCALAR(sonar_enabled, "SONAR_ENABLE", SONAR_ENABLED),
2013-02-28 16:15:09 -04:00
// @Param: SONAR_TRIGGER_CM
// @DisplayName: Sonar trigger distance
// @Description: The distance from an obstacle at which the sonar triggers a turn to avoid the obstacle
// @Units: centimeters
// @Range: 0 1000
// @Increment: 1
// @User: Standard
GSCALAR(sonar_trigger_cm, "SONAR_TRIGGER_CM", 100),
// @Param: SONAR_TURN_ANGLE
// @DisplayName: Sonar trigger angle
// @Description: The course deviation in degrees to apply while avoiding an obstacle detected with the sonar. A positive number means to turn right, and a negative angle means to turn left.
// @Units: centimeters
2013-03-01 07:32:57 -04:00
// @Range: -45 45
2013-02-28 16:15:09 -04:00
// @Increment: 1
// @User: Standard
GSCALAR(sonar_turn_angle, "SONAR_TURN_ANGLE", 45),
// @Param: SONAR_TURN_TIME
// @DisplayName: Sonar turn time
// @Description: The amount of time in seconds to apply the SONAR_TURN_ANGLE after detecting an obstacle.
// @Units: seconds
// @Range: 0 100
// @Increment: 0.1
// @User: Standard
2013-02-28 22:06:04 -04:00
GSCALAR(sonar_turn_time, "SONAR_TURN_TIME", 1.0f),
2013-02-28 16:15:09 -04:00
2013-02-07 18:21:22 -04:00
// @Param: MODE_CH
// @DisplayName: Mode channel
2013-02-08 06:17:54 -04:00
// @Description: RC Channel to use for driving mode control
2012-11-27 20:42:51 -04:00
// @User: Advanced
2013-02-07 18:21:22 -04:00
GSCALAR(mode_channel, "MODE_CH", MODE_CHANNEL),
2012-11-27 20:42:51 -04:00
2013-02-07 18:21:22 -04:00
// @Param: MODE1
// @DisplayName: Mode1
2013-03-01 07:32:57 -04:00
// @Values: 0:Manual,2:LEARNING,3:STEERING,10:Auto,11:RTL,15:Guided
2012-11-27 20:42:51 -04:00
// @User: Standard
2013-02-08 06:17:54 -04:00
// @Description: Driving mode for switch position 1 (910 to 1230 and above 2049)
2013-02-07 18:21:22 -04:00
GSCALAR(mode1, "MODE1", MODE_1),
2012-11-27 20:42:51 -04:00
2013-02-07 18:21:22 -04:00
// @Param: MODE2
// @DisplayName: Mode2
2013-02-08 06:17:54 -04:00
// @Description: Driving mode for switch position 2 (1231 to 1360)
2013-03-01 07:32:57 -04:00
// @Values: 0:Manual,2:LEARNING,3:STEERING,10:Auto,11:RTL,15:Guided
2012-11-27 20:42:51 -04:00
// @User: Standard
2013-02-07 18:21:22 -04:00
GSCALAR(mode2, "MODE2", MODE_2),
2012-11-27 20:42:51 -04:00
2013-02-07 18:21:22 -04:00
// @Param: MODE3
// @DisplayName: Mode3
2013-02-08 06:17:54 -04:00
// @Description: Driving mode for switch position 3 (1361 to 1490)
2013-03-01 07:32:57 -04:00
// @Values: 0:Manual,2:LEARNING,3:STEERING,10:Auto,11:RTL,15:Guided
2012-11-27 20:42:51 -04:00
// @User: Standard
2013-02-07 18:21:22 -04:00
GSCALAR(mode3, "MODE3", MODE_3),
2012-11-27 20:42:51 -04:00
2013-02-07 18:21:22 -04:00
// @Param: MODE4
// @DisplayName: Mode4
2013-02-08 06:17:54 -04:00
// @Description: Driving mode for switch position 4 (1491 to 1620)
2013-03-01 07:32:57 -04:00
// @Values: 0:Manual,2:LEARNING,3:STEERING,10:Auto,11:RTL,15:Guided
2012-11-27 20:42:51 -04:00
// @User: Standard
2013-02-07 18:21:22 -04:00
GSCALAR(mode4, "MODE4", MODE_4),
2012-11-27 20:42:51 -04:00
2013-02-07 18:21:22 -04:00
// @Param: MODE5
// @DisplayName: Mode5
2013-02-08 06:17:54 -04:00
// @Description: Driving mode for switch position 5 (1621 to 1749)
2013-03-01 07:32:57 -04:00
// @Values: 0:Manual,2:LEARNING,3:STEERING,10:Auto,11:RTL,15:Guided
2012-11-27 20:42:51 -04:00
// @User: Standard
2013-02-07 18:21:22 -04:00
GSCALAR(mode5, "MODE5", MODE_5),
2012-11-27 20:42:51 -04:00
2013-02-07 18:21:22 -04:00
// @Param: MODE6
// @DisplayName: Mode6
2013-02-08 06:17:54 -04:00
// @Description: Driving mode for switch position 6 (1750 to 2049)
2013-03-01 07:32:57 -04:00
// @Values: 0:Manual,2:LEARNING,3:STEERING,10:Auto,11:RTL,15:Guided
2012-11-27 20:42:51 -04:00
// @User: Standard
2013-02-07 18:21:22 -04:00
GSCALAR(mode6, "MODE6", MODE_6),
2012-08-06 22:24:20 -03:00
2013-02-08 06:17:54 -04:00
GSCALAR(command_total, "CMD_TOTAL", 0),
GSCALAR(command_index, "CMD_INDEX", 0),
2012-12-18 07:44:12 -04:00
2013-02-08 06:17:54 -04:00
// @Param: WP_RADIUS
// @DisplayName: Waypoint radius
// @Description: The distance in meters from a waypoint when we consider the waypoint has been reached. This determines when the rover will turn along the next waypoint path.
// @Units: meters
// @Range: 0 1000
// @Increment: 0.1
2012-12-18 07:44:12 -04:00
// @User: Standard
2013-02-08 06:17:54 -04:00
GSCALAR(waypoint_radius, "WP_RADIUS", 2.0f),
2012-04-30 04:17:14 -03:00
2013-02-07 18:21:22 -04:00
GGROUP(pidNavSteer, "HDNG2STEER_", PID),
GGROUP(pidServoSteer, "STEER2SRV_", PID),
GGROUP(pidSpeedThrottle, "SPEED2THR_", PID),
2012-04-30 04:17:14 -03:00
// variables not in the g class which contain EEPROM saved variables
GOBJECT(compass, "COMPASS_", Compass),
GOBJECT(gcs0, "SR0_", GCS_MAVLINK),
GOBJECT(gcs3, "SR3_", GCS_MAVLINK),
2012-11-07 03:28:20 -04:00
2013-02-28 21:00:48 -04:00
// @Group: SONAR_
// @Path: ../libraries/AP_RangeFinder/AP_RangeFinder_analog.cpp
GOBJECT(sonar, "SONAR_", AP_RangeFinder_analog),
2012-11-07 03:28:20 -04:00
#if HIL_MODE == HIL_MODE_DISABLED
// @Group: INS_
// @Path: ../libraries/AP_InertialSensor/AP_InertialSensor.cpp
GOBJECT(ins, "INS_", AP_InertialSensor),
#endif
2012-08-06 22:24:20 -03:00
2012-12-18 07:44:12 -04:00
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
2012-11-27 08:20:25 -04:00
// @Group: SIM_
// @Path: ../libraries/SITL/SITL.cpp
GOBJECT(sitl, "SIM_", SITL),
#endif
2012-11-17 02:45:20 -04:00
// @Group: AHRS_
// @Path: ../libraries/AP_AHRS/AP_AHRS.cpp
GOBJECT(ahrs, "AHRS_", AP_AHRS),
2012-08-06 22:24:20 -03:00
AP_VAREND
2012-04-30 04:17:14 -03:00
};
static void load_parameters(void)
{
if (!g.format_version.load() ||
g.format_version != Parameters::k_format_version) {
// erase all parameters
2012-11-21 02:25:11 -04:00
cliSerial->printf_P(PSTR("Firmware change: erasing EEPROM...\n"));
2012-04-30 04:17:14 -03:00
AP_Param::erase_all();
// save the current format version
g.format_version.set_and_save(Parameters::k_format_version);
2012-11-21 02:25:11 -04:00
cliSerial->println_P(PSTR("done."));
2012-04-30 04:17:14 -03:00
} else {
unsigned long before = micros();
// Load all auto-loaded EEPROM variables
AP_Param::load_all();
2012-11-21 02:25:11 -04:00
cliSerial->printf_P(PSTR("load_all took %luus\n"), micros() - before);
2012-04-30 04:17:14 -03:00
}
}