ardupilot/libraries/AC_AttitudeControl/AC_AttitudeControl.cpp

761 lines
38 KiB
C++
Raw Normal View History

#include "AC_AttitudeControl.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
// table of user settable parameters
const AP_Param::GroupInfo AC_AttitudeControl::var_info[] = {
// 0, 1 were RATE_RP_MAX, RATE_Y_MAX
2014-02-03 00:29:17 -04:00
// @Param: SLEW_YAW
// @DisplayName: Yaw target slew rate
// @Description: Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes
// @Units: Centi-Degrees/Sec
2014-02-03 00:29:17 -04:00
// @Range: 500 18000
// @Increment: 100
// @User: Advanced
AP_GROUPINFO("SLEW_YAW", 2, AC_AttitudeControl, _slew_yaw, AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT_CDS),
// 3 was for ACCEL_RP_MAX
// @Param: ACCEL_Y_MAX
// @DisplayName: Acceleration Max for Yaw
// @Description: Maximum acceleration in yaw axis
// @Units: Centi-Degrees/Sec/Sec
// @Range: 0 72000
// @Values: 0:Disabled, 18000:Slow, 36000:Medium, 54000:Fast
// @Increment: 1000
// @User: Advanced
AP_GROUPINFO("ACCEL_Y_MAX", 4, AC_AttitudeControl, _accel_yaw_max, AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT_CDSS),
// @Param: RATE_FF_ENAB
// @DisplayName: Rate Feedforward Enable
// @Description: Controls whether body-frame rate feedfoward is enabled or disabled
// @Values: 0:Disabled, 1:Enabled
// @User: Advanced
AP_GROUPINFO("RATE_FF_ENAB", 5, AC_AttitudeControl, _rate_bf_ff_enabled, AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT),
// @Param: ACCEL_R_MAX
// @DisplayName: Acceleration Max for Roll
// @Description: Maximum acceleration in roll axis
// @Units: Centi-Degrees/Sec/Sec
// @Range: 0 180000
// @Increment: 1000
// @Values: 0:Disabled, 72000:Slow, 108000:Medium, 162000:Fast
// @User: Advanced
AP_GROUPINFO("ACCEL_R_MAX", 6, AC_AttitudeControl, _accel_roll_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS),
// @Param: ACCEL_P_MAX
// @DisplayName: Acceleration Max for Pitch
// @Description: Maximum acceleration in pitch axis
// @Units: Centi-Degrees/Sec/Sec
// @Range: 0 180000
// @Increment: 1000
// @Values: 0:Disabled, 72000:Slow, 108000:Medium, 162000:Fast
// @User: Advanced
AP_GROUPINFO("ACCEL_P_MAX", 7, AC_AttitudeControl, _accel_pitch_max, AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS),
// IDs 8,9,10,11 RESERVED (in use on Solo)
// @Param: ANGLE_BOOST
// @DisplayName: Angle Boost
// @Description: Angle Boost increases output throttle as the vehicle leans to reduce loss of altitude
// @Values: 0:Disabled, 1:Enabled
// @User: Advanced
AP_GROUPINFO("ANGLE_BOOST", 12, AC_AttitudeControl, _angle_boost_enabled, 1),
2016-02-15 02:26:24 -04:00
// @Param: ANG_RLL_P
// @DisplayName: Roll axis angle controller P gain
// @Description: Roll axis angle controller P gain. Converts the error between the desired roll angle and actual angle to a desired roll rate
// @Range: 3.000 12.000
// @User: Standard
AP_SUBGROUPINFO(_p_angle_roll, "ANG_RLL_", 13, AC_AttitudeControl, AC_P),
// @Param: ANG_PIT_P
// @DisplayName: Pitch axis angle controller P gain
// @Description: Pitch axis angle controller P gain. Converts the error between the desired pitch angle and actual angle to a desired pitch rate
// @Range: 3.000 12.000
// @User: Standard
AP_SUBGROUPINFO(_p_angle_pitch, "ANG_PIT_", 14, AC_AttitudeControl, AC_P),
// @Param: ANG_YAW_P
// @DisplayName: Yaw axis angle controller P gain
// @Description: Yaw axis angle controller P gain. Converts the error between the desired yaw angle and actual angle to a desired yaw rate
// @Range: 3.000 6.000
// @User: Standard
AP_SUBGROUPINFO(_p_angle_yaw, "ANG_YAW_", 15, AC_AttitudeControl, AC_P),
// @Param: ANG_LIM_TC
// @DisplayName: Angle Limit (to maintain altitude) Time Constant
// @Description: Angle Limit (to maintain altitude) Time Constant
// @Range: 0.5 10.0
// @User: Advanced
AP_GROUPINFO("ANG_LIM_TC", 16, AC_AttitudeControl, _angle_limit_tc, AC_ATTITUDE_CONTROL_ANGLE_LIMIT_TC_DEFAULT),
AP_GROUPEND
};
// Set output throttle and disable stabilization
void AC_AttitudeControl::set_throttle_out_unstabilized(float throttle_in, bool reset_attitude_control, float filter_cutoff)
{
_throttle_in = throttle_in;
_motors.set_throttle_filter_cutoff(filter_cutoff);
if (reset_attitude_control) {
relax_attitude_controllers();
}
_motors.set_throttle(throttle_in);
_angle_boost = 0.0f;
}
// Ensure attitude controller have zero errors to relax rate controller output
void AC_AttitudeControl::relax_attitude_controllers()
{
// TODO add _ahrs.get_quaternion()
_attitude_target_quat.from_rotation_matrix(_ahrs.get_rotation_body_to_ned());
_attitude_target_ang_vel = _ahrs.get_gyro();
_attitude_target_euler_angle = Vector3f(_ahrs.roll, _ahrs.pitch, _ahrs.yaw);
// Set reference angular velocity used in angular velocity controller equal
// to the input angular velocity and reset the angular velocity integrators.
// This zeros the output of the angular velocity controller.
_rate_target_ang_vel = _ahrs.get_gyro();
2016-02-15 02:26:24 -04:00
get_rate_roll_pid().reset_I();
get_rate_pitch_pid().reset_I();
get_rate_yaw_pid().reset_I();
}
void AC_AttitudeControl::reset_rate_controller_I_terms()
{
get_rate_roll_pid().reset_I();
get_rate_pitch_pid().reset_I();
get_rate_yaw_pid().reset_I();
}
// The attitude controller works around the concept of the desired attitude, target attitude
// and measured attitude. The desired attitude is the attitude input into the attitude controller
// that expresses where the higher level code would like the aircraft to move to. The target attitude is moved
// to the desired attitude with jerk, acceleration, and velocity limits. The target angular velocities are fed
// directly into the rate controllers. The angular error between the measured attitude and the target attitude is
// fed into the angle controller and the output of the angle controller summed at the input of the rate controllers.
// By feeding the target angular velocity directly into the rate controllers the measured and target attitudes
// remain very close together.
//
// All input functions below follow the same procedure
// 1. define the desired attitude the aircraft should attempt to achieve using the input variables
// 2. using the desired attitude and input variables, define the target angular velocity so that it should
// move the target attitude towards the desired attitude
// 3. if _rate_bf_ff_enabled & _use_ff_and_input_shaping are not being used then make the target attitude
// and target angular velocities equal to the desired attitude and desired angular velocities.
// 4. ensure _attitude_target_quat, _attitude_target_euler_angle, _attitude_target_euler_rate and
// _attitude_target_ang_vel have been defined. This ensures input modes can be changed without discontinuity.
// 5. attitude_controller_run_quat is then run to pass the target angular velocities to the rate controllers and
// integrate them into the target attitude. Any errors between the target attitude and the measured attitude are
// corrected by first correcting the thrust vector until the angle between the target thrust vector measured
// trust vector drops below 2*AC_ATTITUDE_THRUST_ERROR_ANGLE. At this point the heading is also corrected.
// Command a Quaternion attitude with feedforward and smoothing
void AC_AttitudeControl::input_quaternion(Quaternion attitude_desired_quat, float smoothing_gain)
{
// calculate the attitude target euler angles
_attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
// ensure smoothing gain can not cause overshoot
smoothing_gain = constrain_float(smoothing_gain,1.0f,1/_dt);
Quaternion attitude_error_quat = _attitude_target_quat.inverse() * attitude_desired_quat;
Vector3f attitude_error_angle;
attitude_error_quat.to_axis_angle(attitude_error_angle);
if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
// When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler
// angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration
// and an exponential decay specified by smoothing_gain at the end.
_attitude_target_ang_vel.x = input_shaping_angle(attitude_error_angle.x, smoothing_gain, get_accel_roll_max_radss(), _attitude_target_ang_vel.x);
_attitude_target_ang_vel.y = input_shaping_angle(attitude_error_angle.y, smoothing_gain, get_accel_pitch_max_radss(), _attitude_target_ang_vel.y);
_attitude_target_ang_vel.z = input_shaping_angle(attitude_error_angle.z, smoothing_gain, get_accel_yaw_max_radss(), _attitude_target_ang_vel.z);
// Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate);
} else {
_attitude_target_quat = attitude_desired_quat;
// Set rate feedforward requests to zero
_attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
_attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);
}
// Call quaternion attitude controller
attitude_controller_run_quat();
}
// Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing
void AC_AttitudeControl::input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds, float smoothing_gain)
2014-02-19 02:55:45 -04:00
{
// Convert from centidegrees on public interface to radians
float euler_roll_angle = radians(euler_roll_angle_cd*0.01f);
float euler_pitch_angle = radians(euler_pitch_angle_cd*0.01f);
float euler_yaw_rate = radians(euler_yaw_rate_cds*0.01f);
// calculate the attitude target euler angles
_attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
// ensure smoothing gain can not cause overshoot
smoothing_gain = constrain_float(smoothing_gain,1.0f,1/_dt);
// Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors)
euler_roll_angle += get_roll_trim_rad();
if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
// translate the roll pitch and yaw acceleration limits to the euler axis
Vector3f euler_accel = euler_accel_limit(_attitude_target_euler_angle, Vector3f(get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()));
// When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler
// angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration
// and an exponential decay specified by smoothing_gain at the end.
_attitude_target_euler_rate.x = input_shaping_angle(euler_roll_angle-_attitude_target_euler_angle.x, smoothing_gain, euler_accel.x, _attitude_target_euler_rate.x);
_attitude_target_euler_rate.y = input_shaping_angle(euler_pitch_angle-_attitude_target_euler_angle.y, smoothing_gain, euler_accel.y, _attitude_target_euler_rate.y);
// When yaw acceleration limiting is enabled, the yaw input shaper constrains angular acceleration about the yaw axis, slewing
// the output rate towards the input rate.
_attitude_target_euler_rate.z = input_shaping_ang_vel(_attitude_target_euler_rate.z, euler_yaw_rate, euler_accel.z);
2014-02-19 02:55:45 -04:00
// Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
euler_rate_to_ang_vel(_attitude_target_euler_angle, _attitude_target_euler_rate, _attitude_target_ang_vel);
2014-02-19 02:55:45 -04:00
} else {
// When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed.
_attitude_target_euler_angle.x = euler_roll_angle;
_attitude_target_euler_angle.y = euler_pitch_angle;
_attitude_target_euler_angle.z += euler_yaw_rate*_dt;
// Compute quaternion target attitude
_attitude_target_quat.from_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
// Set rate feedforward requests to zero
_attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
_attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);
2014-02-19 02:55:45 -04:00
}
// Call quaternion attitude controller
attitude_controller_run_quat();
2014-02-19 02:55:45 -04:00
}
// Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing
void AC_AttitudeControl::input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw, float smoothing_gain)
{
// Convert from centidegrees on public interface to radians
float euler_roll_angle = radians(euler_roll_angle_cd*0.01f);
float euler_pitch_angle = radians(euler_pitch_angle_cd*0.01f);
float euler_yaw_angle = radians(euler_yaw_angle_cd*0.01f);
// calculate the attitude target euler angles
_attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
// ensure smoothing gain can not cause overshoot
smoothing_gain = constrain_float(smoothing_gain,1.0f,1/_dt);
// Add roll trim to compensate tail rotor thrust in heli (will return zero on multirotors)
euler_roll_angle += get_roll_trim_rad();
if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
// translate the roll pitch and yaw acceleration limits to the euler axis
Vector3f euler_accel = euler_accel_limit(_attitude_target_euler_angle, Vector3f(get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()));
2014-02-13 22:52:58 -04:00
// When acceleration limiting and feedforward are enabled, the sqrt controller is used to compute an euler
// angular velocity that will cause the euler angle to smoothly stop at the input angle with limited deceleration
// and an exponential decay specified by smoothing_gain at the end.
_attitude_target_euler_rate.x = input_shaping_angle(euler_roll_angle-_attitude_target_euler_angle.x, smoothing_gain, euler_accel.x, _attitude_target_euler_rate.x);
_attitude_target_euler_rate.y = input_shaping_angle(euler_pitch_angle-_attitude_target_euler_angle.y, smoothing_gain, euler_accel.y, _attitude_target_euler_rate.y);
_attitude_target_euler_rate.z = input_shaping_angle(euler_yaw_angle-_attitude_target_euler_angle.z, smoothing_gain, euler_accel.z, _attitude_target_euler_rate.z);
if (slew_yaw) {
_attitude_target_euler_rate.z = constrain_float(_attitude_target_euler_rate.z, -get_slew_yaw_rads(), get_slew_yaw_rads());
}
// Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
euler_rate_to_ang_vel(_attitude_target_euler_angle, _attitude_target_euler_rate, _attitude_target_ang_vel);
} else {
// When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed.
_attitude_target_euler_angle.x = euler_roll_angle;
_attitude_target_euler_angle.y = euler_pitch_angle;
if (slew_yaw) {
// Compute constrained angle error
float angle_error = constrain_float(wrap_PI(euler_yaw_angle-_attitude_target_euler_angle.z), -get_slew_yaw_rads()*_dt, get_slew_yaw_rads()*_dt);
// Update attitude target from constrained angle error
_attitude_target_euler_angle.z = wrap_PI(angle_error + _attitude_target_euler_angle.z);
} else {
_attitude_target_euler_angle.z = euler_yaw_angle;
}
// Compute quaternion target attitude
_attitude_target_quat.from_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
// Set rate feedforward requests to zero
_attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
_attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);
}
// Call quaternion attitude controller
attitude_controller_run_quat();
}
// Command an euler roll, pitch, and yaw rate with angular velocity feedforward and smoothing
void AC_AttitudeControl::input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds)
{
// Convert from centidegrees on public interface to radians
float euler_roll_rate = radians(euler_roll_rate_cds*0.01f);
float euler_pitch_rate = radians(euler_pitch_rate_cds*0.01f);
float euler_yaw_rate = radians(euler_yaw_rate_cds*0.01f);
// calculate the attitude target euler angles
_attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
// translate the roll pitch and yaw acceleration limits to the euler axis
Vector3f euler_accel = euler_accel_limit(_attitude_target_euler_angle, Vector3f(get_accel_roll_max_radss(), get_accel_pitch_max_radss(), get_accel_yaw_max_radss()));
// When acceleration limiting is enabled, the input shaper constrains angular acceleration, slewing
// the output rate towards the input rate.
_attitude_target_euler_rate.x = input_shaping_ang_vel(_attitude_target_euler_rate.x, euler_roll_rate, euler_accel.x);
_attitude_target_euler_rate.y = input_shaping_ang_vel(_attitude_target_euler_rate.y, euler_pitch_rate, euler_accel.y);
_attitude_target_euler_rate.z = input_shaping_ang_vel(_attitude_target_euler_rate.z, euler_yaw_rate, euler_accel.z);
// Convert euler angle derivative of desired attitude into a body-frame angular velocity vector for feedforward
euler_rate_to_ang_vel(_attitude_target_euler_angle, _attitude_target_euler_rate, _attitude_target_ang_vel);
} else {
// When feedforward is not enabled, the target euler angle is input into the target and the feedforward rate is zeroed.
// Pitch angle is restricted to +- 85.0 degrees to avoid gimbal lock discontinuities.
_attitude_target_euler_angle.x = wrap_PI(_attitude_target_euler_angle.x + euler_roll_rate*_dt);
_attitude_target_euler_angle.y = constrain_float(_attitude_target_euler_angle.y + euler_pitch_rate*_dt, radians(-85.0f), radians(85.0f));
_attitude_target_euler_angle.z = wrap_2PI(_attitude_target_euler_angle.z + euler_yaw_rate*_dt);
// Set rate feedforward requests to zero
_attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
_attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);
// Compute quaternion target attitude
_attitude_target_quat.from_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
}
// Call quaternion attitude controller
attitude_controller_run_quat();
}
// Command an angular velocity with angular velocity feedforward and smoothing
void AC_AttitudeControl::input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds)
{
// Convert from centidegrees on public interface to radians
float roll_rate_rads = radians(roll_rate_bf_cds*0.01f);
float pitch_rate_rads = radians(pitch_rate_bf_cds*0.01f);
float yaw_rate_rads = radians(yaw_rate_bf_cds*0.01f);
// calculate the attitude target euler angles
_attitude_target_quat.to_euler(_attitude_target_euler_angle.x, _attitude_target_euler_angle.y, _attitude_target_euler_angle.z);
if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
// Compute acceleration-limited euler rates
// When acceleration limiting is enabled, the input shaper constrains angular acceleration about the axis, slewing
// the output rate towards the input rate.
_attitude_target_ang_vel.x = input_shaping_ang_vel(_attitude_target_ang_vel.x, roll_rate_rads, get_accel_roll_max_radss());
_attitude_target_ang_vel.y = input_shaping_ang_vel(_attitude_target_ang_vel.y, pitch_rate_rads, get_accel_pitch_max_radss());
_attitude_target_ang_vel.z = input_shaping_ang_vel(_attitude_target_ang_vel.z, yaw_rate_rads, get_accel_yaw_max_radss());
// Convert body-frame angular velocity into euler angle derivative of desired attitude
ang_vel_to_euler_rate(_attitude_target_euler_angle, _attitude_target_ang_vel, _attitude_target_euler_rate);
} else {
// When feedforward is not enabled, the quaternion is calculated and is input into the target and the feedforward rate is zeroed.
Quaternion attitude_target_update_quat;
attitude_target_update_quat.from_axis_angle(Vector3f(roll_rate_rads * _dt, pitch_rate_rads * _dt, yaw_rate_rads * _dt));
_attitude_target_quat = _attitude_target_quat * attitude_target_update_quat;
_attitude_target_quat.normalize();
// Set rate feedforward requests to zero
_attitude_target_euler_rate = Vector3f(0.0f, 0.0f, 0.0f);
_attitude_target_ang_vel = Vector3f(0.0f, 0.0f, 0.0f);
}
// Call quaternion attitude controller
attitude_controller_run_quat();
}
// Calculates the body frame angular velocities to follow the target attitude
void AC_AttitudeControl::attitude_controller_run_quat()
{
// Retrieve quaternion vehicle attitude
// TODO add _ahrs.get_quaternion()
Quaternion attitude_vehicle_quat;
attitude_vehicle_quat.from_rotation_matrix(_ahrs.get_rotation_body_to_ned());
// Compute attitude error
Vector3f attitude_error_vector;
thrust_heading_rotation_angles(_attitude_target_quat, attitude_vehicle_quat, attitude_error_vector, _thrust_error_angle);
// Compute the angular velocity target from the attitude error
_rate_target_ang_vel = update_ang_vel_target_from_att_error(attitude_error_vector);
// Add feedforward term that attempts to ensure that roll and pitch errors rotate with the body frame rather than the reference frame.
_rate_target_ang_vel.x += attitude_error_vector.y * _ahrs.get_gyro().z;
_rate_target_ang_vel.y += -attitude_error_vector.x * _ahrs.get_gyro().z;
// Add the angular velocity feedforward, rotated into vehicle frame
Quaternion attitude_target_ang_vel_quat = Quaternion(0.0f, _attitude_target_ang_vel.x, _attitude_target_ang_vel.y, _attitude_target_ang_vel.z);
Quaternion attitude_error_quat = attitude_vehicle_quat.inverse() * _attitude_target_quat;
Quaternion target_ang_vel_quat = attitude_error_quat.inverse()*attitude_target_ang_vel_quat*attitude_error_quat;
// Correct the thrust vector and smoothly add feedforward and yaw input
if(_thrust_error_angle > AC_ATTITUDE_THRUST_ERROR_ANGLE*2.0f){
_rate_target_ang_vel.z = _ahrs.get_gyro().z;
}else if(_thrust_error_angle > AC_ATTITUDE_THRUST_ERROR_ANGLE){
float flip_scalar = (1.0f - (_thrust_error_angle-AC_ATTITUDE_THRUST_ERROR_ANGLE)/AC_ATTITUDE_THRUST_ERROR_ANGLE);
_rate_target_ang_vel.x += target_ang_vel_quat.q2*flip_scalar;
_rate_target_ang_vel.y += target_ang_vel_quat.q3*flip_scalar;
_rate_target_ang_vel.z += target_ang_vel_quat.q4;
_rate_target_ang_vel.z = _ahrs.get_gyro().z*(1.0-flip_scalar) + _rate_target_ang_vel.z*flip_scalar;
2014-08-05 08:59:25 -03:00
} else {
_rate_target_ang_vel.x += target_ang_vel_quat.q2;
_rate_target_ang_vel.y += target_ang_vel_quat.q3;
_rate_target_ang_vel.z += target_ang_vel_quat.q4;
2014-08-05 08:59:25 -03:00
}
if (_rate_bf_ff_enabled & _use_ff_and_input_shaping) {
// rotate target and normalize
Quaternion attitude_target_update_quat;
attitude_target_update_quat.from_axis_angle(Vector3f(_attitude_target_ang_vel.x * _dt, _attitude_target_ang_vel.y * _dt, _attitude_target_ang_vel.z * _dt));
_attitude_target_quat = _attitude_target_quat * attitude_target_update_quat;
_attitude_target_quat.normalize();
2014-08-05 08:59:25 -03:00
}
}
2014-08-05 08:59:25 -03:00
// thrust_heading_rotation_angles - calculates two ordered rotations to move the att_from_quat quaternion to the att_to_quat quaternion.
// The first rotation corrects the thrust vector and the second rotation corrects the heading vector.
void AC_AttitudeControl::thrust_heading_rotation_angles(Quaternion& att_to_quat, const Quaternion& att_from_quat, Vector3f& att_diff_angle, float& thrust_vec_dot)
{
Matrix3f att_to_rot_matrix; // earth frame to target frame
att_to_quat.rotation_matrix(att_to_rot_matrix);
Vector3f att_to_thrust_vec = att_to_rot_matrix*Vector3f(0.0f,0.0f,1.0f);
Matrix3f att_from_rot_matrix; // earth frame to target frame
att_from_quat.rotation_matrix(att_from_rot_matrix);
Vector3f att_from_thrust_vec = att_from_rot_matrix*Vector3f(0.0f,0.0f,1.0f);
// the cross product of the desired and target thrust vector defines the rotation vector
Vector3f thrust_vec_cross = att_from_thrust_vec % att_to_thrust_vec;
// the dot product is used to calculate the angle between the target and desired thrust vectors
thrust_vec_dot = acosf(constrain_float(att_from_thrust_vec * att_to_thrust_vec,-1.0f,1.0f));
// Normalize the thrust rotation vector
float thrust_vector_length = thrust_vec_cross.length();
if(is_zero(thrust_vector_length) || is_zero(thrust_vec_dot)){
thrust_vec_cross = Vector3f(0,0,1);
thrust_vec_dot = 0.0f;
}else{
thrust_vec_cross /= thrust_vector_length;
}
Quaternion thrust_vec_correction_quat;
thrust_vec_correction_quat.from_axis_angle(thrust_vec_cross, thrust_vec_dot);
thrust_vec_correction_quat = att_from_quat.inverse()*thrust_vec_correction_quat*att_from_quat;
// calculate the remaining rotation required after thrust vector is rotated
Quaternion heading_quat = thrust_vec_correction_quat.inverse()*att_from_quat.inverse()*att_to_quat;
Vector3f rotation;
thrust_vec_correction_quat.to_axis_angle(rotation);
att_diff_angle.x = rotation.x;
att_diff_angle.y = rotation.y;
heading_quat.to_axis_angle(rotation);
att_diff_angle.z = rotation.z;
if(!is_zero(_p_angle_yaw.kP()) && fabsf(att_diff_angle.z) > AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS/_p_angle_yaw.kP()){
att_diff_angle.z = constrain_float(wrap_PI(att_diff_angle.z), -AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS/_p_angle_yaw.kP(), AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS/_p_angle_yaw.kP());
heading_quat.from_axis_angle(Vector3f(0.0f,0.0f,att_diff_angle.z));
att_to_quat = att_from_quat*thrust_vec_correction_quat*heading_quat;
}
}
// calculates the velocity correction from an angle error. The angular velocity has acceleration and
// deceleration limits including basic jerk limiting using smoothing_gain
float AC_AttitudeControl::input_shaping_angle(float error_angle, float smoothing_gain, float accel_max, float target_ang_vel)
{
error_angle = wrap_PI(error_angle);
// Calculate the velocity as error approaches zero with acceleration limited by accel_max_radss
float ang_vel = sqrt_controller(error_angle, smoothing_gain, accel_max);
// Acceleration is limited directly to smooth the beginning of the curve.
if (accel_max > 0) {
float delta_ang_vel = accel_max * _dt;
return constrain_float(ang_vel, target_ang_vel-delta_ang_vel, target_ang_vel+delta_ang_vel);
} else {
return ang_vel;
}
}
// limits the acceleration and deceleration of a velocity request
float AC_AttitudeControl::input_shaping_ang_vel(float target_ang_vel, float desired_ang_vel, float accel_max)
{
if (accel_max > 0.0f) {
float delta_ang_vel = accel_max * _dt;
target_ang_vel += constrain_float(desired_ang_vel - target_ang_vel, -delta_ang_vel, delta_ang_vel);
} else {
target_ang_vel = desired_ang_vel;
}
return target_ang_vel;
}
// translates body frame acceleration limits to the euler axis
Vector3f AC_AttitudeControl::euler_accel_limit(Vector3f euler_rad, Vector3f euler_accel)
{
float sin_phi = constrain_float(fabsf(sinf(euler_rad.x)), 0.1f, 1.0f);
float cos_phi = constrain_float(fabsf(cosf(euler_rad.x)), 0.1f, 1.0f);
float sin_theta = constrain_float(fabsf(sinf(euler_rad.y)), 0.1f, 1.0f);
Vector3f rot_accel;
if(is_zero(euler_accel.x) || is_zero(euler_accel.y) || is_zero(euler_accel.z) || (euler_accel.x < 0.0f) || (euler_accel.y < 0.0f) || (euler_accel.z < 0.0f)) {
rot_accel.x = euler_accel.x;
rot_accel.y = euler_accel.y;
rot_accel.z = euler_accel.z;
} else {
rot_accel.x = euler_accel.x;
rot_accel.y = MIN(euler_accel.y/cos_phi, euler_accel.z/sin_phi);
rot_accel.z = MIN(MIN(euler_accel.x/sin_theta, euler_accel.y/sin_phi), euler_accel.z/cos_phi);
}
return rot_accel;
}
// Shifts earth frame yaw target by yaw_shift_cd. yaw_shift_cd should be in centidegrees and is added to the current target heading
void AC_AttitudeControl::shift_ef_yaw_target(float yaw_shift_cd)
{
float yaw_shift = radians(yaw_shift_cd*0.01f);
Quaternion _attitude_target_update_quat;
2016-06-24 06:13:06 -03:00
_attitude_target_update_quat.from_axis_angle(Vector3f(0.0f, 0.0f, yaw_shift));
_attitude_target_quat = _attitude_target_update_quat*_attitude_target_quat;
}
// Convert a 321-intrinsic euler angle derivative to an angular velocity vector
void AC_AttitudeControl::euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads)
{
float sin_theta = sinf(euler_rad.y);
float cos_theta = cosf(euler_rad.y);
float sin_phi = sinf(euler_rad.x);
float cos_phi = cosf(euler_rad.x);
ang_vel_rads.x = euler_rate_rads.x - sin_theta * euler_rate_rads.z;
ang_vel_rads.y = cos_phi * euler_rate_rads.y + sin_phi * cos_theta * euler_rate_rads.z;
ang_vel_rads.z = -sin_phi * euler_rate_rads.y + cos_theta * cos_phi * euler_rate_rads.z;
}
// Convert an angular velocity vector to a 321-intrinsic euler angle derivative
// Returns false if the vehicle is pitched 90 degrees up or down
bool AC_AttitudeControl::ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads)
{
float sin_theta = sinf(euler_rad.y);
float cos_theta = cosf(euler_rad.y);
float sin_phi = sinf(euler_rad.x);
float cos_phi = cosf(euler_rad.x);
// When the vehicle pitches all the way up or all the way down, the euler angles become discontinuous. In this case, we just return false.
if (is_zero(cos_theta)) {
return false;
}
euler_rate_rads.x = ang_vel_rads.x + sin_phi * (sin_theta/cos_theta) * ang_vel_rads.y + cos_phi * (sin_theta/cos_theta) * ang_vel_rads.z;
euler_rate_rads.y = cos_phi * ang_vel_rads.y - sin_phi * ang_vel_rads.z;
euler_rate_rads.z = (sin_phi / cos_theta) * ang_vel_rads.y + (cos_phi / cos_theta) * ang_vel_rads.z;
return true;
}
// Update rate_target_ang_vel using attitude_error_rot_vec_rad
Vector3f AC_AttitudeControl::update_ang_vel_target_from_att_error(Vector3f attitude_error_rot_vec_rad)
{
Vector3f rate_target_ang_vel;
// Compute the roll angular velocity demand from the roll angle error
if (_use_ff_and_input_shaping) {
rate_target_ang_vel.x = sqrt_controller(attitude_error_rot_vec_rad.x, _p_angle_roll.kP(), constrain_float(get_accel_roll_max_radss()/2.0f, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS));
}else{
rate_target_ang_vel.x = _p_angle_roll.kP() * attitude_error_rot_vec_rad.x;
}
// Compute the pitch angular velocity demand from the roll angle error
if (_use_ff_and_input_shaping) {
rate_target_ang_vel.y = sqrt_controller(attitude_error_rot_vec_rad.y, _p_angle_pitch.kP(), constrain_float(get_accel_pitch_max_radss()/2.0f, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS));
}else{
rate_target_ang_vel.y = _p_angle_pitch.kP() * attitude_error_rot_vec_rad.y;
}
// Compute the yaw angular velocity demand from the roll angle error
if (_use_ff_and_input_shaping) {
rate_target_ang_vel.z = sqrt_controller(attitude_error_rot_vec_rad.z, _p_angle_yaw.kP(), constrain_float(get_accel_yaw_max_radss()/2.0f, AC_ATTITUDE_ACCEL_Y_CONTROLLER_MIN_RADSS, AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS));
}else{
rate_target_ang_vel.z = _p_angle_yaw.kP() * attitude_error_rot_vec_rad.z;
}
return rate_target_ang_vel;
}
// Run the roll angular velocity PID controller and return the output
float AC_AttitudeControl::rate_target_to_motor_roll(float rate_target_rads)
{
float current_rate_rads = _ahrs.get_gyro().x;
float rate_error_rads = rate_target_rads - current_rate_rads;
// pass error to PID controller
get_rate_roll_pid().set_input_filter_d(rate_error_rads);
get_rate_roll_pid().set_desired_rate(rate_target_rads);
2016-02-15 02:26:24 -04:00
float integrator = get_rate_roll_pid().get_integrator();
// Ensure that integrator can only be reduced if the output is saturated
if (!_motors.limit.roll_pitch || ((integrator > 0 && rate_error_rads < 0) || (integrator < 0 && rate_error_rads > 0))) {
2016-02-15 02:26:24 -04:00
integrator = get_rate_roll_pid().get_i();
}
// Compute output in range -1 ~ +1
float output = get_rate_roll_pid().get_p() + integrator + get_rate_roll_pid().get_d();
// Constrain output
return constrain_float(output, -1.0f, 1.0f);
}
// Run the pitch angular velocity PID controller and return the output
float AC_AttitudeControl::rate_target_to_motor_pitch(float rate_target_rads)
{
float current_rate_rads = _ahrs.get_gyro().y;
float rate_error_rads = rate_target_rads - current_rate_rads;
// pass error to PID controller
get_rate_pitch_pid().set_input_filter_d(rate_error_rads);
get_rate_pitch_pid().set_desired_rate(rate_target_rads);
2016-02-15 02:26:24 -04:00
float integrator = get_rate_pitch_pid().get_integrator();
// Ensure that integrator can only be reduced if the output is saturated
if (!_motors.limit.roll_pitch || ((integrator > 0 && rate_error_rads < 0) || (integrator < 0 && rate_error_rads > 0))) {
2016-02-15 02:26:24 -04:00
integrator = get_rate_pitch_pid().get_i();
}
// Compute output in range -1 ~ +1
float output = get_rate_pitch_pid().get_p() + integrator + get_rate_pitch_pid().get_d();
// Constrain output
return constrain_float(output, -1.0f, 1.0f);
}
// Run the yaw angular velocity PID controller and return the output
float AC_AttitudeControl::rate_target_to_motor_yaw(float rate_target_rads)
{
float current_rate_rads = _ahrs.get_gyro().z;
float rate_error_rads = rate_target_rads - current_rate_rads;
// pass error to PID controller
get_rate_yaw_pid().set_input_filter_all(rate_error_rads);
get_rate_yaw_pid().set_desired_rate(rate_target_rads);
2016-02-15 02:26:24 -04:00
float integrator = get_rate_yaw_pid().get_integrator();
// Ensure that integrator can only be reduced if the output is saturated
if (!_motors.limit.yaw || ((integrator > 0 && rate_error_rads < 0) || (integrator < 0 && rate_error_rads > 0))) {
2016-02-15 02:26:24 -04:00
integrator = get_rate_yaw_pid().get_i();
}
// Compute output in range -1 ~ +1
float output = get_rate_yaw_pid().get_p() + integrator + get_rate_yaw_pid().get_d();
// Constrain output
return constrain_float(output, -1.0f, 1.0f);
}
// Enable or disable body-frame feed forward
void AC_AttitudeControl::accel_limiting(bool enable_limits)
{
if (enable_limits) {
// If enabling limits, reload from eeprom or set to defaults
if (is_zero(_accel_roll_max)) {
_accel_roll_max.load();
}
if (is_zero(_accel_pitch_max)) {
_accel_pitch_max.load();
}
if (is_zero(_accel_yaw_max)) {
_accel_yaw_max.load();
}
} else {
_accel_roll_max = 0.0f;
_accel_pitch_max = 0.0f;
_accel_yaw_max = 0.0f;
}
}
// Return tilt angle limit for pilot input that prioritises altitude hold over lean angle
float AC_AttitudeControl::get_althold_lean_angle_max() const
{
// convert to centi-degrees for public interface
return ToDeg(_althold_lean_angle_max) * 100.0f;
}
// Proportional controller with piecewise sqrt sections to constrain second derivative
float AC_AttitudeControl::sqrt_controller(float error, float p, float second_ord_lim)
{
if (second_ord_lim < 0.0f || is_zero(second_ord_lim) || is_zero(p)) {
return error*p;
}
float linear_dist = second_ord_lim/sq(p);
if (error > linear_dist) {
return safe_sqrt(2.0f*second_ord_lim*(error-(linear_dist/2.0f)));
} else if (error < -linear_dist) {
return -safe_sqrt(2.0f*second_ord_lim*(-error-(linear_dist/2.0f)));
} else {
return error*p;
}
}
// Inverse proportional controller with piecewise sqrt sections to constrain second derivative
float AC_AttitudeControl::stopping_point(float first_ord_mag, float p, float second_ord_lim)
{
if (second_ord_lim > 0.0f && !is_zero(second_ord_lim) && is_zero(p)) {
return (first_ord_mag*first_ord_mag)/(2.0f*second_ord_lim);
} else if ((second_ord_lim < 0.0f || is_zero(second_ord_lim)) && !is_zero(p)) {
return first_ord_mag/p;
} else if ((second_ord_lim < 0.0f || is_zero(second_ord_lim)) && is_zero(p)) {
return 0.0f;
}
// calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function
float linear_velocity = second_ord_lim/p;
if (fabsf(first_ord_mag) < linear_velocity) {
// if our current velocity is below the cross-over point we use a linear function
return first_ord_mag/p;
} else {
float linear_dist = second_ord_lim/sq(p);
float overshoot = (linear_dist/2.0f) + sq(first_ord_mag)/(2.0f*second_ord_lim);
if (first_ord_mag > 0){
return overshoot;
} else {
return -overshoot;
}
}
}
// Return roll rate step size in centidegrees/s that results in maximum output after 4 time steps
float AC_AttitudeControl::max_rate_step_bf_roll()
{
2016-02-15 02:26:24 -04:00
float alpha = get_rate_roll_pid().get_filt_alpha();
float alpha_remaining = 1-alpha;
return 2.0f*_motors.get_throttle_hover()*AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX/((alpha_remaining*alpha_remaining*alpha_remaining*alpha*get_rate_roll_pid().kD())/_dt + get_rate_roll_pid().kP());
}
// Return pitch rate step size in centidegrees/s that results in maximum output after 4 time steps
float AC_AttitudeControl::max_rate_step_bf_pitch()
{
2016-02-15 02:26:24 -04:00
float alpha = get_rate_pitch_pid().get_filt_alpha();
float alpha_remaining = 1-alpha;
return 2.0f*_motors.get_throttle_hover()*AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX/((alpha_remaining*alpha_remaining*alpha_remaining*alpha*get_rate_pitch_pid().kD())/_dt + get_rate_pitch_pid().kP());
}
// Return yaw rate step size in centidegrees/s that results in maximum output after 4 time steps
float AC_AttitudeControl::max_rate_step_bf_yaw()
{
2016-02-15 02:26:24 -04:00
float alpha = get_rate_yaw_pid().get_filt_alpha();
float alpha_remaining = 1-alpha;
return 2.0f*_motors.get_throttle_hover()*AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX/((alpha_remaining*alpha_remaining*alpha_remaining*alpha*get_rate_yaw_pid().kD())/_dt + get_rate_yaw_pid().kP());
}