2016-11-14 17:47:45 -04:00
|
|
|
/*
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_RangeFinder_uLanding.h"
|
|
|
|
#include <AP_SerialManager/AP_SerialManager.h>
|
|
|
|
#include <ctype.h>
|
|
|
|
|
2017-09-06 14:43:33 -03:00
|
|
|
#define ULANDING_HDR 254 // Header Byte from uLanding (0xFE)
|
|
|
|
#define ULANDING_HDR_V0 72 // Header Byte for beta V0 of uLanding (0x48)
|
|
|
|
|
2016-11-14 17:47:45 -04:00
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
|
|
/*
|
|
|
|
The constructor also initialises the rangefinder. Note that this
|
|
|
|
constructor is not called until detect() returns true, so we
|
|
|
|
already know that we should setup the rangefinder
|
|
|
|
*/
|
2017-08-07 00:41:01 -03:00
|
|
|
AP_RangeFinder_uLanding::AP_RangeFinder_uLanding(RangeFinder::RangeFinder_State &_state,
|
|
|
|
AP_SerialManager &serial_manager) :
|
2017-08-08 04:32:53 -03:00
|
|
|
AP_RangeFinder_Backend(_state)
|
2016-11-14 17:47:45 -04:00
|
|
|
{
|
|
|
|
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Aerotenna_uLanding, 0);
|
|
|
|
if (uart != nullptr) {
|
|
|
|
uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Aerotenna_uLanding, 0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
detect if a uLanding rangefinder is connected. We'll detect by
|
|
|
|
trying to take a reading on Serial. If we get a result the sensor is
|
|
|
|
there.
|
|
|
|
*/
|
2017-08-07 00:41:01 -03:00
|
|
|
bool AP_RangeFinder_uLanding::detect(AP_SerialManager &serial_manager)
|
2016-11-14 17:47:45 -04:00
|
|
|
{
|
|
|
|
return serial_manager.find_serial(AP_SerialManager::SerialProtocol_Aerotenna_uLanding, 0) != nullptr;
|
|
|
|
}
|
|
|
|
|
2017-09-06 14:43:33 -03:00
|
|
|
/*
|
|
|
|
detect uLanding Firmware Version
|
|
|
|
*/
|
|
|
|
bool AP_RangeFinder_uLanding::detect_version(void)
|
|
|
|
{
|
|
|
|
if (_version_known) {
|
|
|
|
// return true if we've already detected the uLanding version
|
|
|
|
return true;
|
|
|
|
} else if (uart == nullptr) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool hdr_found = false;
|
|
|
|
uint8_t byte1 = 0;
|
|
|
|
uint8_t count = 0;
|
|
|
|
|
|
|
|
// read any available data from uLanding
|
|
|
|
int16_t nbytes = uart->available();
|
|
|
|
|
|
|
|
while (nbytes-- > 0) {
|
|
|
|
uint8_t c = uart->read();
|
|
|
|
|
|
|
|
if (((c == ULANDING_HDR_V0) || (c == ULANDING_HDR)) && !hdr_found) {
|
|
|
|
byte1 = c;
|
|
|
|
hdr_found = true;
|
|
|
|
count++;
|
|
|
|
} else if (hdr_found) {
|
|
|
|
if (byte1 == ULANDING_HDR_V0) {
|
|
|
|
if (++count < 4) {
|
|
|
|
/* need to collect 4 bytes to check for recurring
|
|
|
|
* header byte in the old 3-byte data format
|
|
|
|
*/
|
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
if (c == byte1) {
|
|
|
|
// if header byte is recurring, set uLanding Version
|
|
|
|
_version = 0;
|
|
|
|
_header = ULANDING_HDR_V0;
|
|
|
|
_version_known = true;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
/* if V0 header byte didn't occur again on 4th byte,
|
|
|
|
* start the search again for a header byte
|
|
|
|
*/
|
|
|
|
count = 0;
|
|
|
|
byte1 = 0;
|
|
|
|
hdr_found = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ((c & 0x80) || (c == ULANDING_HDR_V0)) {
|
|
|
|
/* Though unlikely, it is possible we could find ULANDING_HDR
|
|
|
|
* in a data byte from the old 3-byte format. In this case,
|
|
|
|
* either the next byte is another data byte (which by default
|
|
|
|
* is of the form 0x1xxxxxxx), or the next byte is the old
|
|
|
|
* header byte (ULANDING_HDR_V0). In this case, start the search
|
|
|
|
* again for a header byte.
|
|
|
|
*/
|
|
|
|
count = 0;
|
|
|
|
byte1 = 0;
|
|
|
|
hdr_found = false;
|
|
|
|
} else {
|
|
|
|
/* if this second byte passes the above if statement, this byte
|
|
|
|
* is the version number
|
|
|
|
*/
|
|
|
|
_version = c;
|
|
|
|
_header = ULANDING_HDR;
|
|
|
|
_version_known = true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* return false if we've gone through all available data
|
|
|
|
* and haven't detected a uLanding firmware version
|
|
|
|
*/
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-11-14 17:47:45 -04:00
|
|
|
// read - return last value measured by sensor
|
|
|
|
bool AP_RangeFinder_uLanding::get_reading(uint16_t &reading_cm)
|
|
|
|
{
|
|
|
|
if (uart == nullptr) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-09-06 14:43:33 -03:00
|
|
|
|
|
|
|
if (!detect_version()) {
|
|
|
|
// return false if uLanding version check failed
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-11-14 17:47:45 -04:00
|
|
|
// read any available lines from the uLanding
|
|
|
|
float sum = 0;
|
|
|
|
uint16_t count = 0;
|
2017-09-06 14:43:33 -03:00
|
|
|
bool hdr_found = false;
|
2016-11-14 17:47:45 -04:00
|
|
|
|
|
|
|
int16_t nbytes = uart->available();
|
2017-09-06 14:43:33 -03:00
|
|
|
|
2016-11-14 17:47:45 -04:00
|
|
|
while (nbytes-- > 0) {
|
|
|
|
uint8_t c = uart->read();
|
2017-09-06 14:43:33 -03:00
|
|
|
|
|
|
|
if ((c == _header) && !hdr_found) {
|
|
|
|
// located header byte
|
2017-09-15 14:05:20 -03:00
|
|
|
_linebuf_len = 0;
|
2017-09-06 14:43:33 -03:00
|
|
|
hdr_found = true;
|
2016-11-14 17:47:45 -04:00
|
|
|
}
|
2017-09-06 14:43:33 -03:00
|
|
|
// decode index information
|
|
|
|
if (hdr_found) {
|
2017-09-15 14:05:20 -03:00
|
|
|
_linebuf[_linebuf_len++] = c;
|
2017-09-06 14:43:33 -03:00
|
|
|
|
2017-09-15 14:05:20 -03:00
|
|
|
if ((_linebuf_len < (sizeof(_linebuf)/sizeof(_linebuf[0]))) ||
|
|
|
|
(_version == 0 && _linebuf_len < 3)) {
|
|
|
|
/* don't process _linebuf until we've collected six bytes of data
|
|
|
|
* (or 3 bytes for Version 0 firmware)
|
|
|
|
*/
|
2017-09-06 14:43:33 -03:00
|
|
|
continue;
|
|
|
|
} else {
|
|
|
|
if (_version == 0) {
|
2017-09-15 14:05:20 -03:00
|
|
|
// parse data for Firmware Version #0
|
|
|
|
sum += (_linebuf[2]&0x7F)*128 + (_linebuf[1]&0x7F);
|
2017-09-06 14:43:33 -03:00
|
|
|
count++;
|
|
|
|
} else {
|
|
|
|
// evaluate checksum
|
2017-09-15 14:05:20 -03:00
|
|
|
if (((_linebuf[1] + _linebuf[2] + _linebuf[3] + _linebuf[4]) & 0xFF) == _linebuf[5]) {
|
|
|
|
// if checksum passed, parse data for Firmware Version #1
|
|
|
|
sum += _linebuf[3]*256 + _linebuf[2];
|
2017-09-06 14:43:33 -03:00
|
|
|
count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
hdr_found = false;
|
2017-09-15 14:05:20 -03:00
|
|
|
_linebuf_len = 0;
|
2016-11-20 22:07:24 -04:00
|
|
|
}
|
2016-11-14 17:47:45 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (count == 0) {
|
|
|
|
return false;
|
|
|
|
}
|
2016-11-20 22:07:24 -04:00
|
|
|
|
2017-09-06 14:43:33 -03:00
|
|
|
reading_cm = sum / count;
|
|
|
|
|
|
|
|
if (_version == 0) {
|
|
|
|
reading_cm *= 2.5f;
|
|
|
|
}
|
|
|
|
|
2016-11-14 17:47:45 -04:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
update the state of the sensor
|
|
|
|
*/
|
|
|
|
void AP_RangeFinder_uLanding::update(void)
|
|
|
|
{
|
|
|
|
if (get_reading(state.distance_cm)) {
|
|
|
|
// update range_valid state based on distance measured
|
2017-09-15 14:05:20 -03:00
|
|
|
_last_reading_ms = AP_HAL::millis();
|
2016-11-14 17:47:45 -04:00
|
|
|
update_status();
|
2017-09-15 14:05:20 -03:00
|
|
|
} else if (AP_HAL::millis() - _last_reading_ms > 200) {
|
2016-11-14 17:47:45 -04:00
|
|
|
set_status(RangeFinder::RangeFinder_NoData);
|
|
|
|
}
|
|
|
|
}
|