ardupilot/libraries/AP_InertialSensor/AP_InertialSensor.cpp

588 lines
18 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2012-10-11 21:27:19 -03:00
#include <AP_Progmem.h>
#include "AP_InertialSensor.h"
#include <AP_Common.h>
2012-10-11 21:27:19 -03:00
#include <AP_HAL.h>
extern const AP_HAL::HAL& hal;
#define FLASH_LEDS(on) do { if (flash_leds_cb != NULL) flash_leds_cb(on); } while (0)
#define SAMPLE_UNIT 1
// Class level parameters
const AP_Param::GroupInfo AP_InertialSensor::var_info[] PROGMEM = {
// @Param: PRODUCT_ID
// @DisplayName: IMU Product ID
// @Description: Which type of IMU is installed (read-only)
// @User: Standard
AP_GROUPINFO("PRODUCT_ID", 0, AP_InertialSensor, _product_id, 0),
// @Param: ACCSCAL_X
// @DisplayName: Accelerometer scaling of X axis
// @Description: Accelerometer scaling of X axis. Calculated during acceleration calibration routine
// @Range 0.8 1.2
// @User: Advanced
// @Param: ACCSCAL_Y
// @DisplayName: Accelerometer scaling of Y axis
// @Description: Accelerometer scaling of Y axis Calculated during acceleration calibration routine
// @Range 0.8 1.2
// @User: Advanced
// @Param: ACCSCAL_Z
// @DisplayName: Accelerometer scaling of Z axis
// @Description: Accelerometer scaling of Z axis Calculated during acceleration calibration routine
// @Range 0.8 1.2
// @User: Advanced
AP_GROUPINFO("ACCSCAL", 1, AP_InertialSensor, _accel_scale, 0),
// @Param: ACCOFFS_X
// @DisplayName: Accelerometer offsets of X axis
// @Description: Accelerometer offsets of X axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
// @Param: ACCOFFS_Y
// @DisplayName: Accelerometer offsets of Y axis
// @Description: Accelerometer offsets of Y axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
// @Param: ACCOFFS_Z
// @DisplayName: Accelerometer offsets of Z axis
// @Description: Accelerometer offsets of Z axis. This is setup using the acceleration calibration or level operations
// @Units: m/s/s
// @Range: -300 300
// @User: Advanced
AP_GROUPINFO("ACCOFFS", 2, AP_InertialSensor, _accel_offset, 0),
// @Param: GYROFFS_X
// @DisplayName: Gyro offsets of X axis
// @Description: Gyro sensor offsets of X axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Param: GYROFFS_Y
// @DisplayName: Gyro offsets of Y axis
// @Description: Gyro sensor offsets of Y axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
// @Param: GYROFFS_Z
// @DisplayName: Gyro offsets of Z axis
// @Description: Gyro sensor offsets of Z axis. This is setup on each boot during gyro calibrations
// @Units: rad/s
// @User: Advanced
AP_GROUPINFO("GYROFFS", 3, AP_InertialSensor, _gyro_offset, 0),
// @Param: MPU6K_FILTER
// @DisplayName: MPU6000 filter frequency
// @Description: Filter frequency to ask the MPU6000 to apply to samples. This can be set to a lower value to try to cope with very high vibration levels in aircraft. The default value on ArduPlane, APMrover2 and ArduCopter is 20Hz. This option takes effect on the next reboot or gyro initialisation
// @Units: Hz
// @Values: 0:Default,5:5Hz,10:10Hz,20:20Hz,42:42Hz,98:98Hz
// @User: Advanced
AP_GROUPINFO("MPU6K_FILTER", 4, AP_InertialSensor, _mpu6000_filter, 0),
AP_GROUPEND
};
AP_InertialSensor::AP_InertialSensor() :
_accel(),
_gyro()
{
AP_Param::setup_object_defaults(this, var_info);
}
void
AP_InertialSensor::init( Start_style style,
Sample_rate sample_rate,
2012-10-11 21:27:19 -03:00
void (*flash_leds_cb)(bool on))
{
2012-10-11 21:27:19 -03:00
_product_id = _init_sensor(sample_rate);
// check scaling
Vector3f accel_scale = _accel_scale.get();
if( accel_scale.x == 0 && accel_scale.y == 0 && accel_scale.z == 0 ) {
accel_scale.x = accel_scale.y = accel_scale.z = 1.0;
_accel_scale.set(accel_scale);
}
if (WARM_START != style) {
// do cold-start calibration for gyro only
2012-10-11 21:27:19 -03:00
_init_gyro(flash_leds_cb);
}
}
// save parameters to eeprom
void AP_InertialSensor::_save_parameters()
{
_product_id.save();
_accel_scale.save();
_accel_offset.save();
_gyro_offset.save();
}
void
2012-10-11 21:27:19 -03:00
AP_InertialSensor::init_gyro(void (*flash_leds_cb)(bool on))
{
2012-10-11 21:27:19 -03:00
_init_gyro(flash_leds_cb);
// save calibration
_save_parameters();
}
void
2012-10-11 21:27:19 -03:00
AP_InertialSensor::_init_gyro(void (*flash_leds_cb)(bool on))
{
Vector3f last_average, best_avg;
Vector3f ins_gyro;
float best_diff = 0;
// cold start
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(100);
hal.console->printf_P(PSTR("Init Gyro"));
// remove existing gyro offsets
_gyro_offset = Vector3f(0,0,0);
2012-12-05 21:14:16 -04:00
for(int8_t c = 0; c < 25; c++) {
// Mostly we are just flashing the LED's here
// to tell the user to keep the IMU still
FLASH_LEDS(true);
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(20);
update();
ins_gyro = get_gyro();
FLASH_LEDS(false);
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(20);
}
// the strategy is to average 200 points over 1 second, then do it
// again and see if the 2nd average is within a small margin of
// the first
last_average.zero();
// we try to get a good calibration estimate for up to 10 seconds
// if the gyros are stable, we should get it in 2 seconds
for (int16_t j = 0; j <= 10; j++) {
Vector3f gyro_sum, gyro_avg, gyro_diff;
float diff_norm;
uint8_t i;
2012-10-11 21:27:19 -03:00
hal.console->printf_P(PSTR("*"));
gyro_sum.zero();
for (i=0; i<200; i++) {
update();
ins_gyro = get_gyro();
gyro_sum += ins_gyro;
if (i % 40 == 20) {
FLASH_LEDS(true);
} else if (i % 40 == 0) {
FLASH_LEDS(false);
}
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(5);
}
gyro_avg = gyro_sum / i;
gyro_diff = last_average - gyro_avg;
diff_norm = gyro_diff.length();
if (j == 0) {
best_diff = diff_norm;
best_avg = gyro_avg;
} else if (gyro_diff.length() < ToRad(0.04)) {
// we want the average to be within 0.1 bit, which is 0.04 degrees/s
last_average = (gyro_avg * 0.5) + (last_average * 0.5);
_gyro_offset = last_average;
// all done
return;
} else if (diff_norm < best_diff) {
best_diff = diff_norm;
best_avg = (gyro_avg * 0.5) + (last_average * 0.5);
}
last_average = gyro_avg;
}
// we've kept the user waiting long enough - use the best pair we
// found so far
2012-10-11 21:27:19 -03:00
hal.console->printf_P(PSTR("\ngyro did not converge: diff=%f dps\n"), ToDeg(best_diff));
_gyro_offset = best_avg;
}
void
2012-10-11 21:27:19 -03:00
AP_InertialSensor::init_accel(void (*flash_leds_cb)(bool on))
{
2012-10-11 21:27:19 -03:00
_init_accel(flash_leds_cb);
// save calibration
_save_parameters();
}
void
2012-10-11 21:27:19 -03:00
AP_InertialSensor::_init_accel(void (*flash_leds_cb)(bool on))
{
int8_t flashcount = 0;
Vector3f ins_accel;
Vector3f prev;
Vector3f accel_offset;
float total_change;
float max_offset;
// cold start
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(100);
2012-10-11 21:27:19 -03:00
hal.console->printf_P(PSTR("Init Accel"));
// clear accelerometer offsets and scaling
_accel_offset = Vector3f(0,0,0);
_accel_scale = Vector3f(1,1,1);
// initialise accel offsets to a large value the first time
// this will force us to calibrate accels at least twice
accel_offset = Vector3f(500, 500, 500);
// loop until we calculate acceptable offsets
do {
// get latest accelerometer values
update();
ins_accel = get_accel();
// store old offsets
prev = accel_offset;
// get new offsets
accel_offset = ins_accel;
// We take some readings...
for(int8_t i = 0; i < 50; i++) {
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(20);
update();
ins_accel = get_accel();
// low pass filter the offsets
accel_offset = accel_offset * 0.9 + ins_accel * 0.1;
// display some output to the user
if(flashcount == 5) {
2012-10-11 21:27:19 -03:00
hal.console->printf_P(PSTR("*"));
FLASH_LEDS(true);
}
if(flashcount >= 10) {
flashcount = 0;
FLASH_LEDS(false);
}
flashcount++;
}
// null gravity from the Z accel
accel_offset.z += GRAVITY_MSS;
total_change = fabsf(prev.x - accel_offset.x) + fabsf(prev.y - accel_offset.y) + fabsf(prev.z - accel_offset.z);
max_offset = (accel_offset.x > accel_offset.y) ? accel_offset.x : accel_offset.y;
max_offset = (max_offset > accel_offset.z) ? max_offset : accel_offset.z;
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(500);
} while ( total_change > AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE || max_offset > AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET);
// set the global accel offsets
_accel_offset = accel_offset;
2012-10-11 21:27:19 -03:00
hal.console->printf_P(PSTR(" "));
}
#if !defined( __AVR_ATmega1280__ )
2012-10-11 21:27:19 -03:00
// calibrate_accel - perform accelerometer calibration including providing user
// instructions and feedback Gauss-Newton accel calibration routines borrowed
// from Rolfe Schmidt blog post describing the method:
// http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at
// http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
bool AP_InertialSensor::calibrate_accel(void (*flash_leds_cb)(bool on),
AP_InertialSensor_UserInteract* interact,
float &trim_roll,
float &trim_pitch)
{
Vector3f samples[6];
Vector3f new_offsets;
Vector3f new_scaling;
Vector3f orig_offset;
Vector3f orig_scale;
// backup original offsets and scaling
orig_offset = _accel_offset.get();
orig_scale = _accel_scale.get();
// clear accelerometer offsets and scaling
_accel_offset = Vector3f(0,0,0);
_accel_scale = Vector3f(1,1,1);
// capture data from 6 positions
for (int8_t i=0; i<6; i++) {
const prog_char_t *msg;
// display message to user
switch ( i ) {
case 0:
msg = PSTR("level");
break;
case 1:
msg = PSTR("on its LEFT side");
break;
case 2:
msg = PSTR("on its RIGHT side");
break;
case 3:
msg = PSTR("nose DOWN");
break;
case 4:
msg = PSTR("nose UP");
break;
default: // default added to avoid compiler warning
case 5:
msg = PSTR("on its BACK");
break;
}
interact->printf_P(
PSTR("Place APM %S and press any key.\n"), msg);
2012-10-11 21:27:19 -03:00
// wait for user input
interact->blocking_read();
// clear out any existing samples from ins
update();
// wait until we have 32 samples
while( num_samples_available() < 32 * SAMPLE_UNIT ) {
2012-10-11 21:27:19 -03:00
hal.scheduler->delay(10);
}
// read samples from ins
update();
// capture sample
samples[i] = get_accel();
}
// run the calibration routine
if( _calibrate_accel(samples, new_offsets, new_scaling) ) {
interact->printf_P(PSTR("Calibration successful\n"));
// set and save calibration
_accel_offset.set(new_offsets);
_accel_scale.set(new_scaling);
_save_parameters();
// calculate the trims as well and pass back to caller
_calculate_trim(samples[0], trim_roll, trim_pitch);
return true;
}
interact->printf_P(
PSTR("Calibration failed (%.1f %.1f %.1f %.1f %.1f %.1f)\n"),
new_offsets.x, new_offsets.y, new_offsets.z,
new_scaling.x, new_scaling.y, new_scaling.z);
// restore original scaling and offsets
_accel_offset.set(orig_offset);
_accel_scale.set(orig_scale);
return false;
}
/// calibrated - returns true if the accelerometers have been calibrated
/// @note this should not be called while flying because it reads from the eeprom which can be slow
bool AP_InertialSensor::calibrated()
{
return _accel_offset.load();
}
// _calibrate_model - perform low level accel calibration
// accel_sample are accelerometer samples collected in 6 different positions
// accel_offsets are output from the calibration routine
// accel_scale are output from the calibration routine
// returns true if successful
2012-10-11 21:27:19 -03:00
bool AP_InertialSensor::_calibrate_accel( Vector3f accel_sample[6],
Vector3f& accel_offsets, Vector3f& accel_scale )
{
int16_t i;
int16_t num_iterations = 0;
float eps = 0.000000001;
float change = 100.0;
float data[3];
float beta[6];
float delta[6];
float ds[6];
float JS[6][6];
bool success = true;
// reset
beta[0] = beta[1] = beta[2] = 0;
beta[3] = beta[4] = beta[5] = 1.0f/GRAVITY_MSS;
while( num_iterations < 20 && change > eps ) {
num_iterations++;
_calibrate_reset_matrices(ds, JS);
for( i=0; i<6; i++ ) {
data[0] = accel_sample[i].x;
data[1] = accel_sample[i].y;
data[2] = accel_sample[i].z;
_calibrate_update_matrices(ds, JS, beta, data);
}
_calibrate_find_delta(ds, JS, delta);
change = delta[0]*delta[0] +
delta[0]*delta[0] +
delta[1]*delta[1] +
delta[2]*delta[2] +
delta[3]*delta[3] / (beta[3]*beta[3]) +
delta[4]*delta[4] / (beta[4]*beta[4]) +
delta[5]*delta[5] / (beta[5]*beta[5]);
for( i=0; i<6; i++ ) {
beta[i] -= delta[i];
}
}
// copy results out
accel_scale.x = beta[3] * GRAVITY_MSS;
accel_scale.y = beta[4] * GRAVITY_MSS;
accel_scale.z = beta[5] * GRAVITY_MSS;
accel_offsets.x = beta[0] * accel_scale.x;
accel_offsets.y = beta[1] * accel_scale.y;
accel_offsets.z = beta[2] * accel_scale.z;
// sanity check scale
if( accel_scale.is_nan() || fabsf(accel_scale.x-1.0f) > 0.1f || fabsf(accel_scale.y-1.0f) > 0.1f || fabsf(accel_scale.z-1.0f) > 0.1f ) {
success = false;
}
// sanity check offsets (2.0 is roughly 2/10th of a G, 5.0 is roughly half a G)
if( accel_offsets.is_nan() || fabsf(accel_offsets.x) > 2.0f || fabsf(accel_offsets.y) > 2.0f || fabsf(accel_offsets.z) > 3.0f ) {
success = false;
}
// return success or failure
return success;
}
2012-10-11 21:27:19 -03:00
void AP_InertialSensor::_calibrate_update_matrices(float dS[6], float JS[6][6],
float beta[6], float data[3])
{
int16_t j, k;
float dx, b;
float residual = 1.0;
float jacobian[6];
for( j=0; j<3; j++ ) {
b = beta[3+j];
dx = (float)data[j] - beta[j];
residual -= b*b*dx*dx;
jacobian[j] = 2.0f*b*b*dx;
jacobian[3+j] = -2.0f*b*dx*dx;
}
for( j=0; j<6; j++ ) {
dS[j] += jacobian[j]*residual;
for( k=0; k<6; k++ ) {
JS[j][k] += jacobian[j]*jacobian[k];
}
}
}
// _calibrate_reset_matrices - clears matrices
void AP_InertialSensor::_calibrate_reset_matrices(float dS[6], float JS[6][6])
{
int16_t j,k;
for( j=0; j<6; j++ ) {
dS[j] = 0.0f;
for( k=0; k<6; k++ ) {
JS[j][k] = 0.0f;
}
}
}
void AP_InertialSensor::_calibrate_find_delta(float dS[6], float JS[6][6], float delta[6])
{
//Solve 6-d matrix equation JS*x = dS
//first put in upper triangular form
int16_t i,j,k;
float mu;
//make upper triangular
for( i=0; i<6; i++ ) {
//eliminate all nonzero entries below JS[i][i]
for( j=i+1; j<6; j++ ) {
mu = JS[i][j]/JS[i][i];
if( mu != 0.0f ) {
dS[j] -= mu*dS[i];
for( k=j; k<6; k++ ) {
JS[k][j] -= mu*JS[k][i];
}
}
}
}
//back-substitute
for( i=5; i>=0; i-- ) {
dS[i] /= JS[i][i];
JS[i][i] = 1.0f;
for( j=0; j<i; j++ ) {
mu = JS[i][j];
dS[j] -= mu*dS[i];
JS[i][j] = 0.0f;
}
}
for( i=0; i<6; i++ ) {
delta[i] = dS[i];
}
}
// _calculate_trim - calculates the x and y trim angles (in radians) given a raw accel sample (i.e. no scaling or offsets applied) taken when the vehicle was level
void AP_InertialSensor::_calculate_trim(Vector3f accel_sample, float& trim_roll, float& trim_pitch)
{
// scale sample and apply offsets
Vector3f accel_scale = _accel_scale.get();
Vector3f accel_offsets = _accel_offset.get();
Vector3f scaled_accels_x( accel_sample.x * accel_scale.x - accel_offsets.x,
0,
accel_sample.z * accel_scale.z - accel_offsets.z );
Vector3f scaled_accels_y( 0,
accel_sample.y * accel_scale.y - accel_offsets.y,
accel_sample.z * accel_scale.z - accel_offsets.z );
// calculate x and y axis angle (i.e. roll and pitch angles)
Vector3f vertical = Vector3f(0,0,-1);
trim_roll = scaled_accels_y.angle(vertical);
trim_pitch = scaled_accels_x.angle(vertical);
// angle call doesn't return the sign so take care of it here
if( scaled_accels_y.y > 0 ) {
trim_roll = -trim_roll;
}
if( scaled_accels_x.x < 0 ) {
trim_pitch = -trim_pitch;
}
}
#endif // __AVR_ATmega1280__