ardupilot/libraries/AP_HAL_ChibiOS/hwdef/common/flash.c

998 lines
25 KiB
C
Raw Normal View History

/************************************************************************************
* Copyright (C) 2011 Uros Platise. All rights reserved.
* Author: Uros Platise <uros.platise@isotel.eu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Modified for use in AP_HAL by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include "flash.h"
#include "hal.h"
2019-02-03 21:41:26 -04:00
#include <string.h>
2019-08-03 08:08:40 -03:00
#include "stm32_util.h"
#include "hrt.h"
#include <assert.h>
// #pragma GCC optimize("O0")
/*
this driver has been tested with STM32F427 and STM32F412
*/
#ifndef HAL_NO_FLASH_SUPPORT
#ifndef BOARD_FLASH_SIZE
#error "You must define BOARD_FLASH_SIZE in kbyte"
#endif
#define KB(x) ((x*1024))
// Refer Flash memory map in the User Manual to fill the following fields per microcontroller
#define STM32_FLASH_BASE 0x08000000
#define STM32_FLASH_SIZE KB(BOARD_FLASH_SIZE)
// optionally disable interrupts during flash writes
#ifndef STM32_FLASH_DISABLE_ISR
#define STM32_FLASH_DISABLE_ISR 0
#endif
// the 2nd bank of flash needs to be handled differently
#define STM32_FLASH_BANK2_START (STM32_FLASH_BASE+0x00080000)
#if defined(STM32F4)
#if BOARD_FLASH_SIZE == 512
#define STM32_FLASH_NPAGES 8
static const uint32_t flash_memmap[STM32_FLASH_NPAGES] = { KB(16), KB(16), KB(16), KB(16), KB(64),
KB(128), KB(128), KB(128) };
#elif BOARD_FLASH_SIZE == 1024
#define STM32_FLASH_NPAGES 12
static const uint32_t flash_memmap[STM32_FLASH_NPAGES] = { KB(16), KB(16), KB(16), KB(16), KB(64),
KB(128), KB(128), KB(128), KB(128), KB(128), KB(128), KB(128) };
#elif BOARD_FLASH_SIZE == 2048
#define STM32_FLASH_NPAGES 24
static const uint32_t flash_memmap[STM32_FLASH_NPAGES] = { KB(16), KB(16), KB(16), KB(16), KB(64),
KB(128), KB(128), KB(128), KB(128), KB(128), KB(128), KB(128),
KB(16), KB(16), KB(16), KB(16), KB(64),
KB(128), KB(128), KB(128), KB(128), KB(128), KB(128), KB(128)};
#else
#error "BOARD_FLASH_SIZE invalid"
#endif
#elif defined(STM32F7)
#if BOARD_FLASH_SIZE == 512
#define STM32_FLASH_NPAGES 8
static const uint32_t flash_memmap[STM32_FLASH_NPAGES] = { KB(16), KB(16), KB(16), KB(16), KB(64), KB(128), KB(128), KB(128) };
#elif BOARD_FLASH_SIZE == 1024
#define STM32_FLASH_NPAGES 8
static const uint32_t flash_memmap[STM32_FLASH_NPAGES] = { KB(32), KB(32), KB(32), KB(32), KB(128), KB(256), KB(256), KB(256) };
#elif BOARD_FLASH_SIZE == 2048
#define STM32_FLASH_NPAGES 12
static const uint32_t flash_memmap[STM32_FLASH_NPAGES] = { KB(32), KB(32), KB(32), KB(32), KB(128), KB(256), KB(256), KB(256),
KB(256), KB(256), KB(256), KB(256) };
#else
#error "BOARD_FLASH_SIZE invalid"
#endif
2019-02-03 21:41:26 -04:00
#elif defined(STM32H7)
#define STM32_FLASH_NPAGES (BOARD_FLASH_SIZE / 128)
#define STM32_FLASH_FIXED_PAGE_SIZE 128
#elif defined(STM32F100_MCUCONF) || defined(STM32F103_MCUCONF)
#define STM32_FLASH_NPAGES BOARD_FLASH_SIZE
#define STM32_FLASH_FIXED_PAGE_SIZE 1
#elif defined(STM32F105_MCUCONF)
#define STM32_FLASH_NPAGES (BOARD_FLASH_SIZE/2)
#define STM32_FLASH_FIXED_PAGE_SIZE 2
2019-10-31 07:59:23 -03:00
#elif defined(STM32F303_MCUCONF)
#define STM32_FLASH_NPAGES (BOARD_FLASH_SIZE/2)
#define STM32_FLASH_FIXED_PAGE_SIZE 2
#elif defined(STM32G4)
#define STM32_FLASH_NPAGES (BOARD_FLASH_SIZE/2)
#define STM32_FLASH_FIXED_PAGE_SIZE 2
#elif defined(STM32L4)
#define STM32_FLASH_NPAGES (BOARD_FLASH_SIZE/2)
#define STM32_FLASH_FIXED_PAGE_SIZE 2
#else
#error "Unsupported processor for flash.c"
#endif
#if defined(__GNUC__) && __GNUC__ >= 6
#ifdef STORAGE_FLASH_PAGE
static_assert(STORAGE_FLASH_PAGE < STM32_FLASH_NPAGES,
"STORAGE_FLASH_PAGE out of range");
#endif
#endif
// keep a cache of the page addresses
2019-02-03 21:41:26 -04:00
#ifndef STM32_FLASH_FIXED_PAGE_SIZE
static uint32_t flash_pageaddr[STM32_FLASH_NPAGES];
static bool flash_pageaddr_initialised;
2019-02-03 21:41:26 -04:00
#endif
static bool flash_keep_unlocked;
#ifndef FLASH_KEY1
#define FLASH_KEY1 0x45670123
#endif
#ifndef FLASH_KEY2
#define FLASH_KEY2 0xCDEF89AB
#endif
#ifndef FLASH_OPTKEY1
#define FLASH_OPTKEY1 0x08192A3B
#endif
#ifndef FLASH_OPTKEY2
#define FLASH_OPTKEY2 0x4C5D6E7F
#endif
/* Some compiler options will convert short loads and stores into byte loads
* and stores. We don't want this to happen for IO reads and writes!
*/
/* # define getreg16(a) (*(volatile uint16_t *)(a)) */
static inline uint16_t getreg16(unsigned int addr)
{
uint16_t retval;
__asm__ __volatile__("\tldrh %0, [%1]\n\t" : "=r"(retval) : "r"(addr));
return retval;
}
/* define putreg16(v,a) (*(volatile uint16_t *)(a) = (v)) */
static inline void putreg16(uint16_t val, unsigned int addr)
{
__asm__ __volatile__("\tstrh %0, [%1]\n\t": : "r"(val), "r"(addr));
}
2018-06-25 06:00:51 -03:00
/* # define getreg32(a) (*(volatile uint32_t *)(a)) */
static inline uint32_t getreg32(unsigned int addr)
{
2019-02-08 01:40:11 -04:00
uint32_t retval;
__asm__ __volatile__("\tldr %0, [%1]\n\t" : "=r"(retval) : "r"(addr));
2018-06-25 06:00:51 -03:00
return retval;
}
2019-02-03 21:41:26 -04:00
/* define putreg32(v,a) */
static inline void putreg32(uint32_t val, unsigned int addr)
{
2019-02-03 21:41:26 -04:00
*(volatile uint32_t *)(addr) = val;
}
static void stm32_flash_wait_idle(void)
{
__DSB();
2019-02-03 21:41:26 -04:00
#if defined(STM32H7)
while ((FLASH->SR1 & (FLASH_SR_BSY|FLASH_SR_QW|FLASH_SR_WBNE)) ||
(FLASH->SR2 & (FLASH_SR_BSY|FLASH_SR_QW|FLASH_SR_WBNE))) {
// nop
}
#else
while (FLASH->SR & FLASH_SR_BSY) {
// nop
}
2019-02-03 21:41:26 -04:00
#endif
}
static void stm32_flash_clear_errors(void)
{
#if defined(STM32H7)
FLASH->CCR1 = ~0;
FLASH->CCR2 = ~0;
#else
FLASH->SR = 0xF3;
#endif
}
static void stm32_flash_unlock(void)
{
if (flash_keep_unlocked) {
return;
}
stm32_flash_wait_idle();
2019-02-03 21:41:26 -04:00
#if defined(STM32H7)
if (FLASH->CR1 & FLASH_CR_LOCK) {
/* Unlock sequence */
FLASH->KEYR1 = FLASH_KEY1;
FLASH->KEYR1 = FLASH_KEY2;
}
if (FLASH->CR2 & FLASH_CR_LOCK) {
/* Unlock sequence */
FLASH->KEYR2 = FLASH_KEY1;
FLASH->KEYR2 = FLASH_KEY2;
}
#else
if (FLASH->CR & FLASH_CR_LOCK) {
/* Unlock sequence */
FLASH->KEYR = FLASH_KEY1;
FLASH->KEYR = FLASH_KEY2;
}
2019-02-03 21:41:26 -04:00
#endif
#ifdef FLASH_ACR_DCEN
// disable the data cache - see stm32 errata 2.1.11
FLASH->ACR &= ~FLASH_ACR_DCEN;
#endif
}
void stm32_flash_lock(void)
{
if (flash_keep_unlocked) {
return;
}
2019-02-03 21:41:26 -04:00
#if defined(STM32H7)
if (FLASH->SR1 & FLASH_SR_QW) {
FLASH->CR1 |= FLASH_CR_FW;
}
if (FLASH->SR2 & FLASH_SR_QW) {
FLASH->CR2 |= FLASH_CR_FW;
}
stm32_flash_wait_idle();
FLASH->CR1 |= FLASH_CR_LOCK;
FLASH->CR2 |= FLASH_CR_LOCK;
#else
stm32_flash_wait_idle();
FLASH->CR |= FLASH_CR_LOCK;
2019-02-03 21:41:26 -04:00
#endif
#ifdef FLASH_ACR_DCEN
// reset and re-enable the data cache - see stm32 errata 2.1.11
FLASH->ACR |= FLASH_ACR_DCRST;
FLASH->ACR &= ~FLASH_ACR_DCRST;
FLASH->ACR |= FLASH_ACR_DCEN;
#endif
}
#if defined(STM32H7) && defined(HAL_FLASH_PROTECTION)
static void stm32_flash_wait_opt_idle(void)
{
__DSB();
while (FLASH->OPTSR_CUR & FLASH_OPTSR_OPT_BUSY) {
// nop
}
}
static void stm32_flash_opt_clear_errors(void)
{
FLASH->OPTCCR = FLASH_OPTCCR_CLR_OPTCHANGEERR;
}
static bool stm32_flash_unlock_options(void)
{
stm32_flash_wait_opt_idle();
if (FLASH->OPTCR & FLASH_OPTCR_OPTLOCK) {
/* Unlock sequence */
FLASH->OPTKEYR = FLASH_OPTKEY1;
FLASH->OPTKEYR = FLASH_OPTKEY2;
}
if (FLASH->OPTSR_CUR & FLASH_OPTSR_OPTCHANGEERR) {
return false;
}
return true;
}
static bool stm32_flash_lock_options(void)
{
stm32_flash_wait_opt_idle();
FLASH->OPTCR |= FLASH_OPTCR_OPTLOCK;
if (FLASH->OPTSR_CUR & FLASH_OPTSR_OPTCHANGEERR) {
return false;
}
return true;
}
#endif
/*
get the memory address of a page
*/
uint32_t stm32_flash_getpageaddr(uint32_t page)
{
if (page >= STM32_FLASH_NPAGES) {
return 0;
}
2019-02-03 21:41:26 -04:00
#if defined(STM32_FLASH_FIXED_PAGE_SIZE)
return STM32_FLASH_BASE + page * STM32_FLASH_FIXED_PAGE_SIZE * 1024;
#else
if (!flash_pageaddr_initialised) {
uint32_t address = STM32_FLASH_BASE;
uint8_t i;
for (i = 0; i < STM32_FLASH_NPAGES; i++) {
flash_pageaddr[i] = address;
address += stm32_flash_getpagesize(i);
}
flash_pageaddr_initialised = true;
}
return flash_pageaddr[page];
2019-02-03 21:41:26 -04:00
#endif
}
/*
get size in bytes of a page
*/
uint32_t stm32_flash_getpagesize(uint32_t page)
{
2019-02-03 21:41:26 -04:00
#if defined(STM32_FLASH_FIXED_PAGE_SIZE)
(void)page;
return STM32_FLASH_FIXED_PAGE_SIZE * 1024;
#else
return flash_memmap[page];
2019-02-03 21:41:26 -04:00
#endif
}
/*
return total number of pages
*/
uint32_t stm32_flash_getnumpages()
{
return STM32_FLASH_NPAGES;
}
bool stm32_flash_ispageerased(uint32_t page)
{
uint32_t addr;
uint32_t count;
if (page >= STM32_FLASH_NPAGES) {
return false;
}
for (addr = stm32_flash_getpageaddr(page), count = stm32_flash_getpagesize(page);
count; count -= 4, addr += 4) {
uint32_t v = getreg32(addr);
if (v != 0xffffffff) {
return false;
}
}
return true;
}
#ifndef HAL_BOOTLOADER_BUILD
static uint32_t last_erase_ms;
#endif
/*
erase a page
*/
bool stm32_flash_erasepage(uint32_t page)
{
if (page >= STM32_FLASH_NPAGES) {
return false;
}
#ifndef HAL_BOOTLOADER_BUILD
last_erase_ms = hrt_millis32();
#endif
#if STM32_FLASH_DISABLE_ISR
syssts_t sts = chSysGetStatusAndLockX();
#endif
stm32_flash_wait_idle();
stm32_flash_unlock();
// clear any previous errors
2019-02-03 21:41:26 -04:00
stm32_flash_clear_errors();
#if defined(STM32H7)
if (page < 8) {
// first bank
FLASH->SR1 = ~0;
stm32_flash_wait_idle();
uint32_t snb = page << 8;
// use 32 bit operations
FLASH->CR1 = FLASH_CR_PSIZE_1 | snb | FLASH_CR_SER;
FLASH->CR1 |= FLASH_CR_START;
while (FLASH->SR1 & FLASH_SR_QW) ;
} else {
// second bank
FLASH->SR2 = ~0;
stm32_flash_wait_idle();
2019-02-03 21:41:26 -04:00
uint32_t snb = (page-8) << 8;
// use 32 bit operations
FLASH->CR2 = FLASH_CR_PSIZE_1 | snb | FLASH_CR_SER;
FLASH->CR2 |= FLASH_CR_START;
while (FLASH->SR2 & FLASH_SR_QW) ;
}
2019-10-31 07:59:23 -03:00
#elif defined(STM32F1) || defined(STM32F3)
FLASH->CR = FLASH_CR_PER;
FLASH->AR = stm32_flash_getpageaddr(page);
FLASH->CR |= FLASH_CR_STRT;
#elif defined(STM32F4) || defined(STM32F7)
// the snb mask is not contiguous, calculate the mask for the page
uint8_t snb = (((page % 12) << 3) | ((page / 12) << 7));
// use 32 bit operations
FLASH->CR = FLASH_CR_PSIZE_1 | snb | FLASH_CR_SER;
FLASH->CR |= FLASH_CR_STRT;
#elif defined(STM32G4)
FLASH->CR = FLASH_CR_PER;
// rather oddly, PNB is a 7 bit field that the ref manual says can
// contain 8 bits we assume that for 512k single bank devices
// there is an 8th bit
FLASH->CR |= page<<FLASH_CR_PNB_Pos;
FLASH->CR |= FLASH_CR_STRT;
#elif defined(STM32L4)
FLASH->CR = FLASH_CR_PER;
FLASH->CR |= page<<FLASH_CR_PNB_Pos;
FLASH->CR |= FLASH_CR_STRT;
#else
#error "Unsupported MCU"
2019-02-03 21:41:26 -04:00
#endif
stm32_flash_wait_idle();
2019-08-03 08:08:40 -03:00
stm32_cacheBufferInvalidate((void*)stm32_flash_getpageaddr(page), stm32_flash_getpagesize(page));
2019-02-03 21:41:26 -04:00
stm32_flash_lock();
#if STM32_FLASH_DISABLE_ISR
chSysRestoreStatusX(sts);
#endif
#ifndef HAL_BOOTLOADER_BUILD
last_erase_ms = hrt_millis32();
#endif
return stm32_flash_ispageerased(page);
}
2019-02-03 21:41:26 -04:00
#if defined(STM32H7)
// Check that the flash line is erased as writing to an un-erased line causes flash corruption
static bool stm32h7_check_all_ones(uint32_t addr, uint32_t words)
{
for (uint32_t i = 0; i < words; i++) {
// check that the byte was erased
if (getreg32(addr) != 0xFFFFFFFF) {
return false;
}
addr += 4;
}
return true;
}
2019-02-03 21:41:26 -04:00
/*
the H7 needs special handling, and only writes 32 bytes at a time
*/
static bool stm32h7_flash_write32(uint32_t addr, const void *buf)
{
volatile uint32_t *CR, *CCR, *SR;
2019-02-03 21:41:26 -04:00
if (addr - STM32_FLASH_BASE < 8 * STM32_FLASH_FIXED_PAGE_SIZE * 1024) {
CR = &FLASH->CR1;
CCR = &FLASH->CCR1;
SR = &FLASH->SR1;
2019-02-03 21:41:26 -04:00
} else {
CR = &FLASH->CR2;
CCR = &FLASH->CCR2;
SR = &FLASH->SR2;
2019-02-03 21:41:26 -04:00
}
stm32_flash_wait_idle();
2019-02-03 21:41:26 -04:00
*CCR = ~0;
*CR |= FLASH_CR_PG;
const uint32_t *v = (const uint32_t *)buf;
for (uint8_t i=0; i<8; i++) {
2019-02-16 23:26:30 -04:00
while (*SR & (FLASH_SR_BSY|FLASH_SR_QW)) ;
2019-02-03 21:41:26 -04:00
putreg32(*v, addr);
v++;
addr += 4;
}
__DSB();
stm32_flash_wait_idle();
*CCR = ~0;
*CR &= ~FLASH_CR_PG;
return true;
}
static bool stm32_flash_write_h7(uint32_t addr, const void *buf, uint32_t count)
2019-02-03 21:41:26 -04:00
{
uint8_t *b = (uint8_t *)buf;
if ((count & 0x1F) || (addr & 0x1F)) {
// only allow 256 bit aligned writes
return false;
}
// check for erasure
if (!stm32h7_check_all_ones(addr, count >> 2)) {
return false;
}
#if STM32_FLASH_DISABLE_ISR
syssts_t sts = chSysGetStatusAndLockX();
#endif
2019-02-03 21:41:26 -04:00
stm32_flash_unlock();
bool success = true;
2019-02-03 21:41:26 -04:00
while (count >= 32) {
if (!stm32h7_flash_write32(addr, b)) {
success = false;
goto failed;
2019-02-03 21:41:26 -04:00
}
2019-02-03 21:41:26 -04:00
// check contents
if (memcmp((void*)addr, b, 32) != 0) {
success = false;
goto failed;
2019-02-03 21:41:26 -04:00
}
2019-02-03 21:41:26 -04:00
addr += 32;
count -= 32;
b += 32;
}
failed:
stm32_flash_lock();
#if STM32_FLASH_DISABLE_ISR
chSysRestoreStatusX(sts);
#endif
return success;
2019-02-03 21:41:26 -04:00
}
#endif // STM32H7
2019-02-03 21:41:26 -04:00
#if defined(STM32F4) || defined(STM32F7)
static bool stm32_flash_write_f4f7(uint32_t addr, const void *buf, uint32_t count)
{
uint8_t *b = (uint8_t *)buf;
/* STM32 requires half-word access */
if (count & 1) {
2019-02-03 21:41:26 -04:00
return false;
}
if ((addr+count) > STM32_FLASH_BASE+STM32_FLASH_SIZE) {
2019-02-03 21:41:26 -04:00
return false;
}
/* Get flash ready and begin flashing */
if (!(RCC->CR & RCC_CR_HSION)) {
2019-02-03 21:41:26 -04:00
return false;
}
#if STM32_FLASH_DISABLE_ISR
syssts_t sts = chSysGetStatusAndLockX();
#endif
stm32_flash_unlock();
// clear previous errors
2019-02-03 21:41:26 -04:00
stm32_flash_clear_errors();
stm32_flash_wait_idle();
// do as much as possible with 32 bit writes
while (count >= 4 && (addr & 3) == 0) {
FLASH->CR &= ~(FLASH_CR_PSIZE);
FLASH->CR |= FLASH_CR_PSIZE_1 | FLASH_CR_PG;
2019-02-03 21:41:26 -04:00
const uint32_t v1 = *(uint32_t *)b;
2019-02-03 21:41:26 -04:00
putreg32(v1, addr);
// ensure write ordering with cache
__DSB();
stm32_flash_wait_idle();
2019-02-03 21:41:26 -04:00
const uint32_t v2 = getreg32(addr);
if (v2 != v1) {
FLASH->CR &= ~(FLASH_CR_PG);
goto failed;
}
count -= 4;
b += 4;
addr += 4;
}
// the rest as 16 bit
while (count >= 2) {
FLASH->CR &= ~(FLASH_CR_PSIZE);
FLASH->CR |= FLASH_CR_PSIZE_0 | FLASH_CR_PG;
putreg16(*(uint16_t *)b, addr);
// ensure write ordering with cache
__DSB();
stm32_flash_wait_idle();
if (getreg16(addr) != *(uint16_t *)b) {
FLASH->CR &= ~(FLASH_CR_PG);
goto failed;
}
count -= 2;
b += 2;
addr += 2;
}
FLASH->CR &= ~(FLASH_CR_PG);
stm32_flash_lock();
#if STM32_FLASH_DISABLE_ISR
chSysRestoreStatusX(sts);
#endif
2019-02-03 21:41:26 -04:00
return true;
failed:
stm32_flash_lock();
#if STM32_FLASH_DISABLE_ISR
chSysRestoreStatusX(sts);
#endif
2019-02-03 21:41:26 -04:00
return false;
}
#endif // STM32F4 || STM32F7
uint32_t _flash_fail_line;
uint32_t _flash_fail_addr;
uint32_t _flash_fail_count;
uint8_t *_flash_fail_buf;
2019-10-31 07:59:23 -03:00
#if defined(STM32F1) || defined(STM32F3)
static bool stm32_flash_write_f1(uint32_t addr, const void *buf, uint32_t count)
{
uint8_t *b = (uint8_t *)buf;
/* STM32 requires half-word access */
if (count & 1) {
_flash_fail_line = __LINE__;
return false;
}
if ((addr+count) > STM32_FLASH_BASE+STM32_FLASH_SIZE) {
_flash_fail_line = __LINE__;
return false;
}
#if STM32_FLASH_DISABLE_ISR
syssts_t sts = chSysGetStatusAndLockX();
#endif
stm32_flash_unlock();
stm32_flash_wait_idle();
// program in 16 bit steps
while (count >= 2) {
FLASH->CR = FLASH_CR_PG;
putreg16(*(uint16_t *)b, addr);
stm32_flash_wait_idle();
FLASH->CR = 0;
if (getreg16(addr) != *(uint16_t *)b) {
_flash_fail_line = __LINE__;
_flash_fail_addr = addr;
_flash_fail_count = count;
_flash_fail_buf = b;
goto failed;
}
count -= 2;
b += 2;
addr += 2;
}
stm32_flash_lock();
#if STM32_FLASH_DISABLE_ISR
chSysRestoreStatusX(sts);
#endif
return true;
failed:
stm32_flash_lock();
#if STM32_FLASH_DISABLE_ISR
chSysRestoreStatusX(sts);
#endif
return false;
}
2019-10-31 07:59:23 -03:00
#endif // STM32F1 or STM32F3
#if defined(STM32G4) || defined(STM32L4)
static bool stm32_flash_write_g4(uint32_t addr, const void *buf, uint32_t count)
{
uint32_t *b = (uint32_t *)buf;
/* STM32G4 requires double-word access */
if ((count & 7) || (addr & 7)) {
_flash_fail_line = __LINE__;
return false;
}
if ((addr+count) > STM32_FLASH_BASE+STM32_FLASH_SIZE) {
_flash_fail_line = __LINE__;
return false;
}
// skip already programmed word pairs
while (count >= 8 &&
getreg32(addr+0) == b[0] &&
getreg32(addr+4) == b[1]) {
count -= 8;
addr += 8;
b += 2;
}
if (count == 0) {
return true;
}
#if STM32_FLASH_DISABLE_ISR
syssts_t sts = chSysGetStatusAndLockX();
#endif
stm32_flash_unlock();
stm32_flash_wait_idle();
// program in 16 bit steps
while (count >= 2) {
FLASH->CR = FLASH_CR_PG;
putreg32(b[0], addr+0);
putreg32(b[1], addr+4);
stm32_flash_wait_idle();
FLASH->CR = 0;
if (getreg32(addr+0) != b[0] ||
getreg32(addr+4) != b[1]) {
_flash_fail_line = __LINE__;
_flash_fail_addr = addr;
_flash_fail_count = count;
_flash_fail_buf = (uint8_t *)b;
goto failed;
}
count -= 8;
b += 2;
addr += 8;
}
stm32_flash_lock();
#if STM32_FLASH_DISABLE_ISR
chSysRestoreStatusX(sts);
#endif
return true;
failed:
stm32_flash_lock();
#if STM32_FLASH_DISABLE_ISR
chSysRestoreStatusX(sts);
#endif
return false;
}
#endif // STM32G4
bool stm32_flash_write(uint32_t addr, const void *buf, uint32_t count)
{
2019-10-31 07:59:23 -03:00
#if defined(STM32F1) || defined(STM32F3)
return stm32_flash_write_f1(addr, buf, count);
#elif defined(STM32F4) || defined(STM32F7)
return stm32_flash_write_f4f7(addr, buf, count);
#elif defined(STM32H7)
return stm32_flash_write_h7(addr, buf, count);
#elif defined(STM32G4) || defined(STM32L4)
return stm32_flash_write_g4(addr, buf, count);
#else
#error "Unsupported MCU"
#endif
}
void stm32_flash_keep_unlocked(bool set)
{
if (set && !flash_keep_unlocked) {
stm32_flash_unlock();
flash_keep_unlocked = true;
} else if (!set && flash_keep_unlocked) {
flash_keep_unlocked = false;
stm32_flash_lock();
}
}
/**
* @brief write protect the main flash or bootloader sectors
*/
void stm32_flash_protect_flash(bool bootloader, bool protect)
{
(void)bootloader;
(void)protect;
#if defined(STM32H7) && !defined(HAL_BOOTLOADER_BUILD) && defined(HAL_FLASH_PROTECTION)
uint32_t prg1 = FLASH->WPSN_CUR1;
uint32_t prg2 = FLASH->WPSN_CUR2;
#ifndef STORAGE_FLASH_PAGE
const uint32_t storage_page = 0xFF;
#else
const uint32_t storage_page = STORAGE_FLASH_PAGE;
#endif
const uint32_t reserve_page = (FLASH_LOAD_ADDRESS - 0x08000000) / (1024 * 128);
if (bootloader) { // only lock the reserved section
for (uint32_t i = 0; i < reserve_page; i++) {
if (protect) {
prg1 &= ~(1U<<i);
} else {
prg1 |= 1U<<i;
}
}
} else {
for (uint32_t i = reserve_page; i < 8; i++) {
if (i != storage_page && i != storage_page+1 && protect) {
prg1 &= ~(1U<<i);
} else {
prg1 |= 1U<<i;
}
}
for (uint32_t i = 0; i < 8; i++) {
if (i+8 != storage_page && i+8 != storage_page+1 && protect) {
prg2 &= ~(1U<<i);
} else {
prg2 |= 1U<<i;
}
}
}
// check if any changes to be made
if (prg1 == FLASH->WPSN_CUR1 && prg2 == FLASH->WPSN_CUR2) {
return;
}
stm32_flash_opt_clear_errors();
stm32_flash_clear_errors();
if (stm32_flash_unlock_options()) {
FLASH->WPSN_PRG1 = prg1;
FLASH->WPSN_PRG2 = prg2;
FLASH->OPTCR |= FLASH_OPTCR_OPTSTART;
stm32_flash_wait_opt_idle();
stm32_flash_lock_options();
}
#endif
}
/*
* remove all protections from flash banks
* this is a destructive operation requiring bank erasure
* see H743 reference manual 4.3.10 - flash bank erase with protection removal
*/
void stm32_flash_unprotect_flash()
{
#if defined(STM32H7) && defined(HAL_FLASH_PROTECTION)
stm32_flash_opt_clear_errors();
stm32_flash_clear_errors();
if ((FLASH->PRAR_CUR2 & 0xFFF) <= ((FLASH->PRAR_CUR2 >> 16) & 0xFFF)
|| (FLASH->SCAR_CUR2 & 0xFFF) <= ((FLASH->SCAR_CUR2 >> 16) & 0xFFF)) {
if (stm32_flash_unlock_options()) {
const uint32_t start_addr = 0x00;
const uint32_t end_addr = 0xFF;
const uint32_t prg = (1 << 31) | ((start_addr << 16) | end_addr);
FLASH->PRAR_PRG2 = prg;
FLASH->SCAR_PRG2 = prg;
FLASH->WPSN_PRG2 = 0xFF;
stm32_flash_unlock();
FLASH->CR2 |= FLASH_CR_BER; // bank 2 erase
FLASH->CR2 |= FLASH_CR_START;
stm32_flash_wait_idle();
stm32_flash_lock();
}
}
if ((FLASH->PRAR_CUR1 & 0xFFF) <= ((FLASH->PRAR_CUR1 >> 16) & 0xFFF)
|| (FLASH->SCAR_CUR1 & 0xFFF) <= ((FLASH->SCAR_CUR1 >> 16) & 0xFFF)) {
if (stm32_flash_unlock_options()) {
const uint32_t start_addr = 0x00;
const uint32_t end_addr = 0xFF;
const uint32_t prg = (1 << 31) | ((start_addr << 16) | end_addr);
FLASH->PRAR_PRG1 = prg;
FLASH->SCAR_PRG1 = prg;
FLASH->WPSN_PRG1 = 0xFF;
stm32_flash_unlock();
FLASH->CR1 |= FLASH_CR_BER; // bank 1 erase
FLASH->CR1 |= FLASH_CR_START;
stm32_flash_wait_idle();
stm32_flash_lock();
}
}
// remove write protection from banks 1&2
if ((FLASH->WPSN_CUR2 & 0xFF) != 0xFF
|| (FLASH->WPSN_CUR1 & 0xFF) != 0xFF) {
if (stm32_flash_unlock_options()) {
FLASH->WPSN_PRG1 = 0xFF;
FLASH->WPSN_PRG2 = 0xFF;
FLASH->OPTCR |= FLASH_OPTCR_OPTSTART;
stm32_flash_wait_opt_idle();
stm32_flash_lock_options();
}
}
#endif
}
#ifndef HAL_BOOTLOADER_BUILD
/*
return true if we had a recent erase
*/
bool stm32_flash_recent_erase(void)
{
return hrt_millis32() - last_erase_ms < 3000U;
}
#endif
#endif // HAL_NO_FLASH_SUPPORT