ardupilot/libraries/AP_VisualOdom/AP_VisualOdom_IntelT265.cpp

289 lines
10 KiB
C++
Raw Normal View History

2020-04-03 01:38:17 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_VisualOdom_IntelT265.h"
#if HAL_VISUALODOM_ENABLED
2020-04-03 01:38:17 -03:00
#include <AP_HAL/AP_HAL.h>
#include <AP_AHRS/AP_AHRS.h>
2022-11-06 21:24:49 -04:00
#include <GCS_MAVLink/GCS.h>
2020-04-03 01:38:17 -03:00
#include <AP_Logger/AP_Logger.h>
#define VISUALODOM_RESET_IGNORE_DURATION_MS 1000 // sensor data is ignored for 1sec after a position reset
2020-04-03 01:38:17 -03:00
extern const AP_HAL::HAL& hal;
// consume vision position estimate data and send to EKF. distances in meters
void AP_VisualOdom_IntelT265::handle_vision_position_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, const Quaternion &attitude, float posErr, float angErr, uint8_t reset_counter)
2020-04-03 01:38:17 -03:00
{
const float scale_factor = _frontend.get_pos_scale();
Vector3f pos{x * scale_factor, y * scale_factor, z * scale_factor};
2020-04-03 01:38:17 -03:00
Quaternion att = attitude;
// handle request to align sensor's yaw with vehicle's AHRS/EKF attitude
if (_align_yaw) {
if (align_yaw_to_ahrs(pos, attitude)) {
_align_yaw = false;
2020-04-03 01:38:17 -03:00
}
}
if (_align_posxy || _align_posz) {
if (align_position_to_ahrs(pos, _align_posxy, _align_posz)) {
_align_posxy = _align_posz = false;
}
}
2020-04-03 01:38:17 -03:00
// rotate position and attitude to align with vehicle
rotate_and_correct_position(pos);
rotate_attitude(att);
posErr = constrain_float(posErr, _frontend.get_pos_noise(), 100.0f);
angErr = constrain_float(angErr, _frontend.get_yaw_noise(), 1.5f);
// check for recent position reset
bool consume = should_consume_sensor_data(true, reset_counter);
if (consume) {
// send attitude and position to EKF
AP::ahrs().writeExtNavData(pos, att, posErr, angErr, time_ms, _frontend.get_delay_ms(), get_reset_timestamp_ms(reset_counter));
}
2020-04-03 01:38:17 -03:00
// calculate euler orientation for logging
float roll;
float pitch;
float yaw;
att.to_euler(roll, pitch, yaw);
// log sensor data
2021-01-22 14:30:14 -04:00
Write_VisualPosition(remote_time_us, time_ms, pos.x, pos.y, pos.z, degrees(roll), degrees(pitch), wrap_360(degrees(yaw)), posErr, angErr, reset_counter, !consume);
2020-04-03 01:38:17 -03:00
// store corrected attitude for use in pre-arm checks
_attitude_last = att;
// record time for health monitoring
_last_update_ms = AP_HAL::millis();
}
// consume vision velocity estimate data and send to EKF, velocity in NED meters per second
void AP_VisualOdom_IntelT265::handle_vision_speed_estimate(uint64_t remote_time_us, uint32_t time_ms, const Vector3f &vel, uint8_t reset_counter)
{
// rotate velocity to align with vehicle
Vector3f vel_corrected = vel;
rotate_velocity(vel_corrected);
// check for recent position reset
bool consume = should_consume_sensor_data(false, reset_counter);
if (consume) {
// send velocity to EKF
AP::ahrs().writeExtNavVelData(vel_corrected, _frontend.get_vel_noise(), time_ms, _frontend.get_delay_ms());
}
// record time for health monitoring
_last_update_ms = AP_HAL::millis();
2021-01-22 14:30:14 -04:00
Write_VisualVelocity(remote_time_us, time_ms, vel_corrected, reset_counter, !consume);
}
2020-04-03 01:38:17 -03:00
// apply rotation and correction to position
void AP_VisualOdom_IntelT265::rotate_and_correct_position(Vector3f &position) const
{
if (_use_posvel_rotation) {
position = _posvel_rotation * position;
2020-04-03 01:38:17 -03:00
}
position += _pos_correction;
}
// apply rotation to velocity
void AP_VisualOdom_IntelT265::rotate_velocity(Vector3f &velocity) const
{
if (_use_posvel_rotation) {
velocity = _posvel_rotation * velocity;
}
}
2020-04-03 01:38:17 -03:00
// rotate attitude using _yaw_trim
void AP_VisualOdom_IntelT265::rotate_attitude(Quaternion &attitude) const
{
// apply orientation rotation
if (_use_att_rotation) {
attitude *= _att_rotation;
}
// apply earth-frame yaw rotation
if (!is_zero(_yaw_trim)) {
attitude = _yaw_rotation * attitude;
}
return;
}
// use sensor provided attitude to calculate rotation to align sensor with AHRS/EKF attitude
bool AP_VisualOdom_IntelT265::align_yaw_to_ahrs(const Vector3f &position, const Quaternion &attitude)
2020-04-03 01:38:17 -03:00
{
// do not align to ahrs if we are its yaw source
if (AP::ahrs().using_extnav_for_yaw()) {
return false;
}
// do not align until ahrs yaw initialised
if (!AP::ahrs().initialised() || !AP::ahrs().dcm_yaw_initialised()) {
2020-04-03 01:38:17 -03:00
return false;
}
// clear any existing errors
_error_orientation = false;
// create rotation quaternion to correct for orientation
const Rotation rot = _frontend.get_orientation();
_att_rotation.initialise();
_use_att_rotation = false;
if (rot != Rotation::ROTATION_NONE) {
_att_rotation.rotate(rot);
_att_rotation.invert();
_use_att_rotation = true;
}
Quaternion att_corrected = attitude;
att_corrected *= _att_rotation;
// extract sensor's corrected yaw
const float sens_yaw = att_corrected.get_euler_yaw();
// trim yaw by difference between ahrs and sensor yaw
const float yaw_trim_orig = _yaw_trim;
_yaw_trim = wrap_2PI(AP::ahrs().get_yaw() - sens_yaw);
gcs().send_text(MAV_SEVERITY_INFO, "VisOdom: yaw shifted %d to %d deg",
(int)degrees(_yaw_trim - yaw_trim_orig),
(int)wrap_360(degrees(sens_yaw + _yaw_trim)));
2020-04-03 01:38:17 -03:00
// convert _yaw_trim to _yaw_rotation to speed up processing later
_yaw_rotation.from_euler(0.0f, 0.0f, _yaw_trim);
// calculate position with current rotation and correction
Vector3f pos_orig = position;
rotate_and_correct_position(pos_orig);
// create position and velocity rotation from yaw trim
_use_posvel_rotation = false;
2020-04-03 01:38:17 -03:00
if (!is_zero(_yaw_trim)) {
_posvel_rotation.from_euler(0.0f, 0.0f, _yaw_trim);
_use_posvel_rotation = true;
2020-04-03 01:38:17 -03:00
}
// recalculate position with new rotation
Vector3f pos_new = position;
rotate_and_correct_position(pos_new);
// update position correction to remove change due to rotation
_pos_correction += (pos_orig - pos_new);
return true;
}
// align position with ahrs position by updating _pos_correction
// sensor_pos should be the position directly from the sensor with only scaling applied (i.e. no yaw or position corrections)
bool AP_VisualOdom_IntelT265::align_position_to_ahrs(const Vector3f &sensor_pos, bool align_xy, bool align_z)
{
// fail immediately if ahrs cannot provide position
Vector3f ahrs_pos_ned;
if (!AP::ahrs().get_relative_position_NED_origin(ahrs_pos_ned)) {
return false;
}
// calculate position with current rotation and correction
Vector3f pos_orig = sensor_pos;
rotate_and_correct_position(pos_orig);
// update position correction
if (align_xy) {
_pos_correction.x += (ahrs_pos_ned.x - pos_orig.x);
_pos_correction.y += (ahrs_pos_ned.y - pos_orig.y);
}
if (align_z) {
_pos_correction.z += (ahrs_pos_ned.z - pos_orig.z);
}
return true;
}
2020-04-03 01:38:17 -03:00
// returns false if we fail arming checks, in which case the buffer will be populated with a failure message
bool AP_VisualOdom_IntelT265::pre_arm_check(char *failure_msg, uint8_t failure_msg_len) const
{
// exit immediately if not healthy
if (!healthy()) {
hal.util->snprintf(failure_msg, failure_msg_len, "not healthy");
2020-04-03 01:38:17 -03:00
return false;
}
// check for unsupported orientation
if (_error_orientation) {
hal.util->snprintf(failure_msg, failure_msg_len, "check VISO_ORIENT parameter");
return false;
}
// get ahrs attitude
Quaternion ahrs_quat;
if (!AP::ahrs().get_quaternion(ahrs_quat)) {
hal.util->snprintf(failure_msg, failure_msg_len, "waiting for AHRS attitude");
2020-04-03 01:38:17 -03:00
return false;
}
// check if roll and pitch is different by > 10deg (using NED so cannot determine whether roll or pitch specifically)
const float rp_diff_deg = degrees(ahrs_quat.roll_pitch_difference(_attitude_last));
2020-04-03 01:38:17 -03:00
if (rp_diff_deg > 10.0f) {
hal.util->snprintf(failure_msg, failure_msg_len, "roll/pitch diff %4.1f deg (>10)",(double)rp_diff_deg);
2020-04-03 01:38:17 -03:00
return false;
}
// check if yaw is different by > 10deg
Vector3f angle_diff;
ahrs_quat.angular_difference(_attitude_last).to_axis_angle(angle_diff);
2020-04-03 01:38:17 -03:00
const float yaw_diff_deg = degrees(fabsf(angle_diff.z));
if (yaw_diff_deg > 10.0f) {
hal.util->snprintf(failure_msg, failure_msg_len, "yaw diff %4.1f deg (>10)",(double)yaw_diff_deg);
2020-04-03 01:38:17 -03:00
return false;
}
return true;
}
// returns true if sensor data should be consumed, false if it should be ignored
// set vision_position_estimate to true if reset_counter is from the VISION_POSITION_ESTIMATE source, false otherwise
// only the VISION_POSITION_ESTIMATE message's reset_counter is used to determine if sensor data should be ignored
bool AP_VisualOdom_IntelT265::should_consume_sensor_data(bool vision_position_estimate, uint8_t reset_counter)
{
if (get_type() == AP_VisualOdom::VisualOdom_Type::VOXL) {
// we don't discard data after a reset for VOXL
return true;
}
uint32_t now_ms = AP_HAL::millis();
// set ignore start time if reset counter has changed
if (vision_position_estimate) {
if (reset_counter != _pos_reset_counter_last) {
_pos_reset_counter_last = reset_counter;
_pos_reset_ignore_start_ms = now_ms;
}
}
// check if 1 second has passed since the last reset
if ((now_ms - _pos_reset_ignore_start_ms) > VISUALODOM_RESET_IGNORE_DURATION_MS) {
_pos_reset_ignore_start_ms = 0;
}
return (_pos_reset_ignore_start_ms == 0);
}
#endif