2020-10-26 03:32:36 -03:00
|
|
|
/*
|
|
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This file is distributed in the hope that it will be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
* See the GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
FRSky FPort2 implementation, with thanks to FrSky for
|
|
|
|
specification
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "AP_RCProtocol_FPort2.h"
|
|
|
|
#include <AP_Vehicle/AP_Vehicle_Type.h>
|
|
|
|
#include <AP_Frsky_Telem/AP_Frsky_Telem.h>
|
|
|
|
#include <AP_Vehicle/AP_Vehicle_Type.h>
|
|
|
|
#include <RC_Channel/RC_Channel.h>
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
|
|
#include <AP_Math/crc.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
|
|
#define FRAME_LEN_16 0x18
|
|
|
|
#define FRAME_LEN_8 0x0D
|
|
|
|
#define FRAME_LEN_24 0x23
|
|
|
|
#define FRAME_LEN_DOWNLINK 0x08
|
|
|
|
|
|
|
|
#define FRAME_TYPE_CHANNEL 0xFF
|
|
|
|
#define FRAME_TYPE_FC 0x1B
|
|
|
|
|
|
|
|
#define MAX_CHANNELS 24
|
|
|
|
|
|
|
|
#define FLAGS_FAILSAFE_BIT 3
|
|
|
|
#define FLAGS_FRAMELOST_BIT 2
|
|
|
|
|
|
|
|
#define CHAN_SCALE_FACTOR1 1000U
|
|
|
|
#define CHAN_SCALE_FACTOR2 1600U
|
|
|
|
#define CHAN_SCALE_OFFSET 875U
|
|
|
|
|
2020-11-28 06:26:57 -04:00
|
|
|
#define FPORT2_PRIM_NULL 0x00
|
|
|
|
#define FPORT2_PRIM_READ 0x30
|
|
|
|
#define FPORT2_PRIM_WRITE 0x31
|
|
|
|
|
2020-10-26 03:32:36 -03:00
|
|
|
struct PACKED FPort2_Frame {
|
|
|
|
uint8_t len;
|
|
|
|
uint8_t type;
|
|
|
|
union {
|
|
|
|
uint8_t data[36];
|
|
|
|
struct PACKED {
|
|
|
|
uint8_t prim;
|
|
|
|
uint16_t appid;
|
|
|
|
uint8_t data[4];
|
|
|
|
uint8_t crc;
|
|
|
|
} downlink;
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
static_assert(sizeof(FPort2_Frame) == FPORT2_CONTROL_FRAME_SIZE, "FPort2_Frame incorrect size");
|
|
|
|
|
|
|
|
// constructor
|
|
|
|
AP_RCProtocol_FPort2::AP_RCProtocol_FPort2(AP_RCProtocol &_frontend, bool _inverted) :
|
|
|
|
AP_RCProtocol_Backend(_frontend),
|
|
|
|
inverted(_inverted)
|
|
|
|
{}
|
|
|
|
|
|
|
|
// decode a full FPort2 control frame
|
|
|
|
void AP_RCProtocol_FPort2::decode_control(const FPort2_Frame &frame)
|
|
|
|
{
|
|
|
|
uint16_t values[MAX_CHANNELS];
|
|
|
|
|
|
|
|
decode_11bit_channels(frame.data, chan_count, values, CHAN_SCALE_FACTOR1, CHAN_SCALE_FACTOR2, CHAN_SCALE_OFFSET);
|
|
|
|
|
|
|
|
const uint8_t b_flags = frame.data[byte_input.control_len-5];
|
|
|
|
const uint8_t b_rssi = frame.data[byte_input.control_len-4];
|
|
|
|
|
|
|
|
bool failsafe = ((b_flags & (1 << FLAGS_FAILSAFE_BIT)) != 0);
|
|
|
|
|
|
|
|
// fport2 rssi 0-50, ardupilot rssi 0-255, scale factor 255/50=5.1
|
|
|
|
const uint8_t scaled_rssi = MIN(b_rssi * 5.1f, 255);
|
|
|
|
|
|
|
|
add_input(chan_count, values, failsafe, scaled_rssi);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
decode a full FPort2 downlink frame
|
|
|
|
*/
|
|
|
|
void AP_RCProtocol_FPort2::decode_downlink(const FPort2_Frame &frame)
|
|
|
|
{
|
|
|
|
#if !APM_BUILD_TYPE(APM_BUILD_iofirmware)
|
|
|
|
/*
|
|
|
|
if we are getting FPORT2 over a UART then we can ask the FrSky
|
|
|
|
telem library for some passthrough data to send back, enabling
|
|
|
|
telemetry on the receiver via the same uart pin as we use for
|
|
|
|
incoming RC frames
|
|
|
|
*/
|
|
|
|
|
|
|
|
AP_HAL::UARTDriver *uart = get_UART();
|
|
|
|
if (!uart) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2020-11-28 06:26:57 -04:00
|
|
|
// no telemetry for 24ch fport2, timing is too tight
|
|
|
|
if (chan_count > 16) {
|
2020-10-26 03:32:36 -03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2020-11-28 06:26:57 -04:00
|
|
|
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
|
|
|
|
// 0x30,0x31 read/write frames
|
|
|
|
// allowed reply prim: 0x00,0x32
|
|
|
|
if (frame.downlink.prim == FPORT2_PRIM_READ || frame.downlink.prim == FPORT2_PRIM_WRITE) {
|
|
|
|
AP_Frsky_Telem::set_telem_data(frame.downlink.prim, frame.downlink.appid, le32toh_ptr(frame.downlink.data));
|
|
|
|
}
|
|
|
|
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
|
|
|
|
|
2020-10-26 03:32:36 -03:00
|
|
|
/*
|
2020-11-28 06:26:57 -04:00
|
|
|
we're only interested in "flight controller" requests i.e. 0x1B
|
|
|
|
Notes:
|
|
|
|
need to check how to handle multiple sensor IDs (we probably should respond to 0x1E as well)
|
|
|
|
with fport2 we need to account for the IDs we send sensor data from
|
|
|
|
if we respond to multiple sensors like we do for sport we need to make sure GPS data
|
|
|
|
is always sent with the same sensor ID or else OpenTX will see multiple sensor instances (one for each sensor we respond to)
|
|
|
|
(need to double check on OpenTX if fport2 carries sensor IDs up to the OpenTX sensor tables)
|
|
|
|
*/
|
|
|
|
if (frame.type != FRAME_TYPE_FC) {
|
|
|
|
/*
|
|
|
|
get SPort data from FRSky_Telem
|
|
|
|
when we are not polled for data we prepare telemetry data for the next poll
|
|
|
|
we save the data to a variable so in case we're late we'll
|
|
|
|
send it in the next call, this prevents corruption of status text messages
|
|
|
|
*/
|
|
|
|
if (!telem_data.available) {
|
|
|
|
if (!AP_Frsky_Telem::get_telem_data(telem_data.frame, telem_data.appid, telem_data.data)) {
|
|
|
|
telem_data.frame = 0x00;
|
|
|
|
telem_data.appid = 0x00;
|
|
|
|
telem_data.data = 0x00;
|
|
|
|
}
|
|
|
|
telem_data.available = true;
|
2020-10-26 03:32:36 -03:00
|
|
|
}
|
2020-11-28 06:26:57 -04:00
|
|
|
return;
|
2020-10-26 03:32:36 -03:00
|
|
|
}
|
2020-11-28 06:26:57 -04:00
|
|
|
|
2020-10-26 03:32:36 -03:00
|
|
|
/*
|
|
|
|
check that we haven't been too slow in responding to the new
|
|
|
|
UART data. If we respond too late then we will corrupt the next
|
2020-11-28 06:26:57 -04:00
|
|
|
incoming control frame.
|
|
|
|
16ch fport2: 4.5ms window before next control frame
|
|
|
|
specs require to release the bus at least 1.5ms before next control frame (uplink frame takes 0.851ms)
|
2020-10-26 03:32:36 -03:00
|
|
|
*/
|
|
|
|
uint64_t tend = uart->receive_time_constraint_us(1);
|
|
|
|
uint64_t now = AP_HAL::micros64();
|
|
|
|
uint64_t tdelay = now - tend;
|
|
|
|
if (tdelay > 2500) {
|
|
|
|
// we've been too slow in responding
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2020-11-28 06:26:57 -04:00
|
|
|
// we initialize to a default null frame
|
|
|
|
uint8_t buf[10] {};
|
2020-10-26 03:32:36 -03:00
|
|
|
|
|
|
|
buf[0] = 0x08;
|
|
|
|
buf[1] = frame.type;
|
2020-11-28 06:26:57 -04:00
|
|
|
// do not consume telemetry data for invalid downlink frames, i.e. incoming prim == 0x00
|
|
|
|
if (frame.downlink.prim != FPORT2_PRIM_NULL) {
|
|
|
|
buf[2] = telem_data.frame;
|
|
|
|
buf[3] = telem_data.appid & 0xFF;
|
|
|
|
buf[4] = telem_data.appid >> 8;
|
|
|
|
memcpy(&buf[5], &telem_data.data, 4);
|
|
|
|
// get fresh telem_data in the next call
|
|
|
|
telem_data.available = false;
|
|
|
|
}
|
2020-10-26 03:32:36 -03:00
|
|
|
buf[9] = crc_sum8(&buf[1], 8);
|
|
|
|
|
|
|
|
uart->write(buf, sizeof(buf));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
process a FPort2 input pulse of the given width
|
|
|
|
*/
|
|
|
|
void AP_RCProtocol_FPort2::process_pulse(uint32_t width_s0, uint32_t width_s1)
|
|
|
|
{
|
|
|
|
if (have_UART()) {
|
|
|
|
// if we can use a UART we would much prefer to, as it allows
|
|
|
|
// us to send SPORT data out
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint32_t w0 = width_s0;
|
|
|
|
uint32_t w1 = width_s1;
|
|
|
|
if (inverted) {
|
|
|
|
w0 = saved_width;
|
|
|
|
w1 = width_s0;
|
|
|
|
saved_width = width_s1;
|
|
|
|
}
|
|
|
|
uint8_t b;
|
|
|
|
if (ss.process_pulse(w0, w1, b)) {
|
|
|
|
_process_byte(ss.get_byte_timestamp_us(), b);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// support byte input
|
|
|
|
void AP_RCProtocol_FPort2::_process_byte(uint32_t timestamp_us, uint8_t b)
|
|
|
|
{
|
|
|
|
const bool have_frame_gap = (timestamp_us - byte_input.last_byte_us >= 2000U);
|
|
|
|
|
|
|
|
byte_input.last_byte_us = timestamp_us;
|
|
|
|
|
|
|
|
if (have_frame_gap) {
|
|
|
|
// if we have a frame gap then this must be the start of a new
|
|
|
|
// frame
|
|
|
|
byte_input.ofs = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (byte_input.ofs == 0) {
|
|
|
|
switch (b) {
|
|
|
|
case FRAME_LEN_8:
|
|
|
|
byte_input.control_len = 16;
|
|
|
|
chan_count = 8;
|
|
|
|
byte_input.is_downlink = false;
|
|
|
|
break;
|
|
|
|
case FRAME_LEN_16:
|
|
|
|
byte_input.control_len = 27;
|
|
|
|
chan_count = 16;
|
|
|
|
byte_input.is_downlink = false;
|
|
|
|
break;
|
|
|
|
case FRAME_LEN_24:
|
2020-11-28 06:26:57 -04:00
|
|
|
byte_input.control_len = 38;
|
2020-10-26 03:32:36 -03:00
|
|
|
chan_count = 24;
|
|
|
|
byte_input.is_downlink = false;
|
|
|
|
break;
|
|
|
|
case FRAME_LEN_DOWNLINK:
|
|
|
|
byte_input.control_len = 10;
|
|
|
|
byte_input.is_downlink = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
// definately not FPort2, missing header byte
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (byte_input.ofs == 1) {
|
|
|
|
if (!byte_input.is_downlink && b != FRAME_TYPE_CHANNEL) {
|
|
|
|
// not channel data
|
|
|
|
byte_input.ofs = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
byte_input.buf[byte_input.ofs++] = b;
|
|
|
|
|
|
|
|
const FPort2_Frame *frame = (const FPort2_Frame *)&byte_input.buf[0];
|
|
|
|
|
|
|
|
if (byte_input.control_len > 2 && byte_input.ofs == byte_input.control_len) {
|
|
|
|
if (!byte_input.is_downlink) {
|
|
|
|
log_data(AP_RCProtocol::FPORT2, timestamp_us, byte_input.buf, byte_input.ofs);
|
|
|
|
if (check_checksum()) {
|
|
|
|
decode_control(*frame);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// downlink packet
|
|
|
|
if (check_checksum()) {
|
|
|
|
decode_downlink(*frame);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
goto reset;
|
|
|
|
}
|
|
|
|
if (byte_input.ofs >= sizeof(byte_input.buf)) {
|
|
|
|
goto reset;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
|
|
|
|
reset:
|
|
|
|
byte_input.ofs = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// check checksum byte
|
|
|
|
bool AP_RCProtocol_FPort2::check_checksum(void)
|
|
|
|
{
|
|
|
|
return crc_sum8(&byte_input.buf[1], byte_input.control_len-1) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// support byte input
|
|
|
|
void AP_RCProtocol_FPort2::process_byte(uint8_t b, uint32_t baudrate)
|
|
|
|
{
|
|
|
|
if (baudrate != 115200) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
_process_byte(AP_HAL::micros(), b);
|
|
|
|
}
|