2015-10-06 18:20:43 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
# include <AP_HAL/AP_HAL.h>
# if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
# include "AP_NavEKF2.h"
# include "AP_NavEKF2_core.h"
# include <AP_AHRS/AP_AHRS.h>
# include <AP_Vehicle/AP_Vehicle.h>
# include <stdio.h>
extern const AP_HAL : : HAL & hal ;
/********************************************************
* OPT FLOW AND RANGE FINDER *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// Read the range finder and take new measurements if available
// Read at 20Hz and apply a median filter
void NavEKF2_core : : readRangeFinder ( void )
{
uint8_t midIndex ;
uint8_t maxIndex ;
uint8_t minIndex ;
// get theoretical correct range when the vehicle is on the ground
rngOnGnd = _rng . ground_clearance_cm ( ) * 0.01f ;
if ( _rng . status ( ) = = RangeFinder : : RangeFinder_Good & & ( imuSampleTime_ms - lastRngMeasTime_ms ) > 50 ) {
// store samples and sample time into a ring buffer
rngMeasIndex + + ;
if ( rngMeasIndex > 2 ) {
rngMeasIndex = 0 ;
}
storedRngMeasTime_ms [ rngMeasIndex ] = imuSampleTime_ms ;
storedRngMeas [ rngMeasIndex ] = _rng . distance_cm ( ) * 0.01f ;
// check for three fresh samples and take median
bool sampleFresh [ 3 ] ;
for ( uint8_t index = 0 ; index < = 2 ; index + + ) {
sampleFresh [ index ] = ( imuSampleTime_ms - storedRngMeasTime_ms [ index ] ) < 500 ;
}
if ( sampleFresh [ 0 ] & & sampleFresh [ 1 ] & & sampleFresh [ 2 ] ) {
if ( storedRngMeas [ 0 ] > storedRngMeas [ 1 ] ) {
minIndex = 1 ;
maxIndex = 0 ;
} else {
maxIndex = 0 ;
minIndex = 1 ;
}
if ( storedRngMeas [ 2 ] > storedRngMeas [ maxIndex ] ) {
midIndex = maxIndex ;
} else if ( storedRngMeas [ 2 ] < storedRngMeas [ minIndex ] ) {
midIndex = minIndex ;
} else {
midIndex = 2 ;
}
rngMea = max ( storedRngMeas [ midIndex ] , rngOnGnd ) ;
newDataRng = true ;
rngValidMeaTime_ms = imuSampleTime_ms ;
} else if ( onGround ) {
// if on ground and no return, we assume on ground range
rngMea = rngOnGnd ;
newDataRng = true ;
rngValidMeaTime_ms = imuSampleTime_ms ;
} else {
newDataRng = false ;
}
lastRngMeasTime_ms = imuSampleTime_ms ;
}
}
// write the raw optical flow measurements
// this needs to be called externally.
void NavEKF2_core : : writeOptFlowMeas ( uint8_t & rawFlowQuality , Vector2f & rawFlowRates , Vector2f & rawGyroRates , uint32_t & msecFlowMeas )
{
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
// A positive X rate is produced by a positive sensor rotation about the X axis
// A positive Y rate is produced by a positive sensor rotation about the Y axis
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
flowMeaTime_ms = imuSampleTime_ms ;
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
// reset the accumulated body delta angle and time
// don't do the calculation if not enough time lapsed for a reliable body rate measurement
if ( delTimeOF > 0.01f ) {
flowGyroBias . x = 0.99f * flowGyroBias . x + 0.01f * constrain_float ( ( rawGyroRates . x - delAngBodyOF . x / delTimeOF ) , - 0.1f , 0.1f ) ;
flowGyroBias . y = 0.99f * flowGyroBias . y + 0.01f * constrain_float ( ( rawGyroRates . y - delAngBodyOF . y / delTimeOF ) , - 0.1f , 0.1f ) ;
delAngBodyOF . zero ( ) ;
delTimeOF = 0.0f ;
}
// check for takeoff if relying on optical flow and zero measurements until takeoff detected
// if we haven't taken off - constrain position and velocity states
if ( frontend . _fusionModeGPS = = 3 ) {
detectOptFlowTakeoff ( ) ;
}
// calculate rotation matrices at mid sample time for flow observations
stateStruct . quat . rotation_matrix ( Tbn_flow ) ;
Tnb_flow = Tbn_flow . transposed ( ) ;
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
if ( ( rawFlowQuality > 0 ) & & rawFlowRates . length ( ) < 4.2f & & rawGyroRates . length ( ) < 4.2f ) {
// correct flow sensor rates for bias
omegaAcrossFlowTime . x = rawGyroRates . x - flowGyroBias . x ;
omegaAcrossFlowTime . y = rawGyroRates . y - flowGyroBias . y ;
// write uncorrected flow rate measurements that will be used by the focal length scale factor estimator
// note correction for different axis and sign conventions used by the px4flow sensor
ofDataNew . flowRadXY = - rawFlowRates ; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
// write flow rate measurements corrected for body rates
ofDataNew . flowRadXYcomp . x = ofDataNew . flowRadXY . x + omegaAcrossFlowTime . x ;
ofDataNew . flowRadXYcomp . y = ofDataNew . flowRadXY . y + omegaAcrossFlowTime . y ;
// record time last observation was received so we can detect loss of data elsewhere
flowValidMeaTime_ms = imuSampleTime_ms ;
// estimate sample time of the measurement
ofDataNew . time_ms = imuSampleTime_ms - frontend . _flowDelay_ms - frontend . flowTimeDeltaAvg_ms / 2 ;
2015-10-15 09:01:04 -03:00
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
ofDataNew . time_ms = roundToNearest ( ofDataNew . time_ms , frontend . fusionTimeStep_ms ) ;
2015-10-18 19:11:58 -03:00
// Prevent time delay exceeding age of oldest IMU data in the buffer
ofDataNew . time_ms = max ( ofDataNew . time_ms , imuDataDelayed . time_ms ) ;
2015-10-06 18:20:43 -03:00
// Save data to buffer
StoreOF ( ) ;
// Check for data at the fusion time horizon
newDataFlow = RecallOF ( ) ;
}
}
// store OF data in a history array
void NavEKF2_core : : StoreOF ( )
{
if ( ofStoreIndex > = OBS_BUFFER_LENGTH ) {
ofStoreIndex = 0 ;
}
storedOF [ ofStoreIndex ] = ofDataNew ;
ofStoreIndex + = 1 ;
}
// return newest un-used optical flow data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core : : RecallOF ( )
{
of_elements dataTemp ;
of_elements dataTempZero ;
dataTempZero . time_ms = 0 ;
uint32_t temp_ms = 0 ;
2015-10-20 23:44:14 -03:00
uint8_t bestIndex = 0 ;
2015-10-06 18:20:43 -03:00
for ( uint8_t i = 0 ; i < OBS_BUFFER_LENGTH ; i + + ) {
dataTemp = storedOF [ i ] ;
// find a measurement older than the fusion time horizon that we haven't checked before
if ( dataTemp . time_ms ! = 0 & & dataTemp . time_ms < = imuDataDelayed . time_ms ) {
// Find the most recent non-stale measurement that meets the time horizon criteria
if ( ( ( imuDataDelayed . time_ms - dataTemp . time_ms ) < 500 ) & & dataTemp . time_ms > temp_ms ) {
ofDataDelayed = dataTemp ;
temp_ms = dataTemp . time_ms ;
2015-10-20 23:44:14 -03:00
bestIndex = i ;
2015-10-06 18:20:43 -03:00
}
}
}
if ( temp_ms ! = 0 ) {
2015-10-20 23:44:14 -03:00
// zero the time stamp for that piece of data so we won't use it again
storedOF [ bestIndex ] = dataTempZero ;
2015-10-06 18:20:43 -03:00
return true ;
} else {
return false ;
}
}
/********************************************************
* MAGNETOMETER *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// return magnetometer offsets
// return true if offsets are valid
bool NavEKF2_core : : getMagOffsets ( Vector3f & magOffsets ) const
{
// compass offsets are valid if we have finalised magnetic field initialisation and magnetic field learning is not prohibited and primary compass is valid
if ( secondMagYawInit & & ( frontend . _magCal ! = 2 ) & & _ahrs - > get_compass ( ) - > healthy ( 0 ) ) {
magOffsets = _ahrs - > get_compass ( ) - > get_offsets ( 0 ) - stateStruct . body_magfield * 1000.0f ;
return true ;
} else {
magOffsets = _ahrs - > get_compass ( ) - > get_offsets ( 0 ) ;
return false ;
}
}
// check for new magnetometer data and update store measurements if available
void NavEKF2_core : : readMagData ( )
{
2015-10-20 23:46:36 -03:00
// do not accept new compass data faster than 14Hz (nominal rate is 10Hz) to prevent high processor loading
// because magnetometer fusion is an expensive step and we could overflow the FIFO buffer
if ( use_compass ( ) & & _ahrs - > get_compass ( ) - > last_update_usec ( ) - lastMagUpdate_us > 70000 ) {
2015-10-06 18:20:43 -03:00
// store time of last measurement update
2015-10-20 20:15:25 -03:00
lastMagUpdate_us = _ahrs - > get_compass ( ) - > last_update_usec ( ) ;
2015-10-06 18:20:43 -03:00
// estimate of time magnetometer measurement was taken, allowing for delays
2015-10-18 19:11:58 -03:00
magDataNew . time_ms = imuSampleTime_ms - frontend . magDelay_ms ;
2015-10-06 18:20:43 -03:00
2015-10-15 09:01:04 -03:00
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
2015-10-18 19:11:58 -03:00
magDataNew . time_ms = roundToNearest ( magDataNew . time_ms , frontend . fusionTimeStep_ms ) ;
2015-10-15 09:01:04 -03:00
2015-10-06 18:20:43 -03:00
// read compass data and scale to improve numerical conditioning
magDataNew . mag = _ahrs - > get_compass ( ) - > get_field ( ) * 0.001f ;
// check for consistent data between magnetometers
consistentMagData = _ahrs - > get_compass ( ) - > consistent ( ) ;
// check if compass offsets have been changed and adjust EKF bias states to maintain consistent innovations
if ( _ahrs - > get_compass ( ) - > healthy ( 0 ) ) {
Vector3f nowMagOffsets = _ahrs - > get_compass ( ) - > get_offsets ( 0 ) ;
bool changeDetected = ( ! is_equal ( nowMagOffsets . x , lastMagOffsets . x ) | | ! is_equal ( nowMagOffsets . y , lastMagOffsets . y ) | | ! is_equal ( nowMagOffsets . z , lastMagOffsets . z ) ) ;
// Ignore bias changes before final mag field and yaw initialisation, as there may have been a compass calibration
if ( changeDetected & & secondMagYawInit ) {
stateStruct . body_magfield . x + = ( nowMagOffsets . x - lastMagOffsets . x ) * 0.001f ;
stateStruct . body_magfield . y + = ( nowMagOffsets . y - lastMagOffsets . y ) * 0.001f ;
stateStruct . body_magfield . z + = ( nowMagOffsets . z - lastMagOffsets . z ) * 0.001f ;
}
lastMagOffsets = nowMagOffsets ;
}
// save magnetometer measurement to buffer to be fused later
StoreMag ( ) ;
}
}
// store magnetometer data in a history array
void NavEKF2_core : : StoreMag ( )
{
if ( magStoreIndex > = OBS_BUFFER_LENGTH ) {
magStoreIndex = 0 ;
}
storedMag [ magStoreIndex ] = magDataNew ;
magStoreIndex + = 1 ;
}
// return newest un-used magnetometer data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core : : RecallMag ( )
{
mag_elements dataTemp ;
mag_elements dataTempZero ;
dataTempZero . time_ms = 0 ;
uint32_t temp_ms = 0 ;
2015-10-20 23:44:14 -03:00
uint8_t bestIndex = 0 ;
2015-10-06 18:20:43 -03:00
for ( uint8_t i = 0 ; i < OBS_BUFFER_LENGTH ; i + + ) {
dataTemp = storedMag [ i ] ;
// find a measurement older than the fusion time horizon that we haven't checked before
if ( dataTemp . time_ms ! = 0 & & dataTemp . time_ms < = imuDataDelayed . time_ms ) {
// Find the most recent non-stale measurement that meets the time horizon criteria
if ( ( ( imuDataDelayed . time_ms - dataTemp . time_ms ) < 500 ) & & dataTemp . time_ms > temp_ms ) {
magDataDelayed = dataTemp ;
temp_ms = dataTemp . time_ms ;
2015-10-20 23:44:14 -03:00
bestIndex = i ;
2015-10-06 18:20:43 -03:00
}
}
}
if ( temp_ms ! = 0 ) {
2015-10-20 23:44:14 -03:00
// zero the time stamp for that piece of data so we won't use it again
storedMag [ bestIndex ] = dataTempZero ;
2015-10-06 18:20:43 -03:00
return true ;
} else {
return false ;
}
}
/********************************************************
* Inertial Measurements *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// update IMU delta angle and delta velocity measurements
void NavEKF2_core : : readIMUData ( )
{
const AP_InertialSensor & ins = _ahrs - > get_ins ( ) ;
// average IMU sampling rate
dtIMUavg = 1.0f / ins . get_sample_rate ( ) ;
// the imu sample time is used as a common time reference throughout the filter
imuSampleTime_ms = hal . scheduler - > millis ( ) ;
2015-10-19 02:46:49 -03:00
if ( ins . use_accel ( 0 ) & & ins . use_accel ( 1 ) ) {
// dual accel mode
2015-10-20 02:50:18 -03:00
// delta time from each IMU
float dtDelVel0 = dtIMUavg ;
float dtDelVel1 = dtIMUavg ;
// delta velocity vector from each IMU
Vector3f delVel0 , delVel1 ;
2015-10-19 02:46:49 -03:00
// Get delta velocity and time data from each IMU
readDeltaVelocity ( 0 , delVel0 , dtDelVel0 ) ;
readDeltaVelocity ( 1 , delVel1 , dtDelVel1 ) ;
2015-10-19 20:41:44 -03:00
// apply a peak hold 0.2 second time constant decaying envelope filter to the noise length on IMU 0
2015-10-19 02:46:49 -03:00
float alpha = 1.0f - 5.0f * dtDelVel0 ;
imuNoiseFiltState0 = maxf ( ins . get_vibration_levels ( 0 ) . length ( ) , alpha * imuNoiseFiltState0 ) ;
2015-10-19 20:41:44 -03:00
// apply a peak hold 0.2 second time constant decaying envelope filter to the noise length on IMU 1
2015-10-19 02:46:49 -03:00
alpha = 1.0f - 5.0f * dtDelVel1 ;
imuNoiseFiltState1 = maxf ( ins . get_vibration_levels ( 1 ) . length ( ) , alpha * imuNoiseFiltState1 ) ;
2015-10-19 20:41:44 -03:00
// calculate the filtered difference between acceleration vectors from IMU 0 and 1
2015-10-19 02:46:49 -03:00
// apply a LPF filter with a 1.0 second time constant
alpha = constrain_float ( 0.5f * ( dtDelVel0 + dtDelVel1 ) , 0.0f , 1.0f ) ;
accelDiffFilt = ( ins . get_accel ( 0 ) - ins . get_accel ( 1 ) ) * alpha + accelDiffFilt * ( 1.0f - alpha ) ;
float accelDiffLength = accelDiffFilt . length ( ) ;
// Check the difference for excessive error and use the IMU with less noise
// Apply hysteresis to prevent rapid switching
if ( accelDiffLength > 1.8f | | ( accelDiffLength > 1.2f & & lastImuSwitchState ! = IMUSWITCH_MIXED ) ) {
if ( lastImuSwitchState = = IMUSWITCH_MIXED ) {
// no previous fail so switch to the IMU with least noise
if ( imuNoiseFiltState0 < imuNoiseFiltState1 ) {
lastImuSwitchState = IMUSWITCH_IMU0 ;
// Get data from IMU 0
imuDataNew . delVel = delVel0 ;
imuDataNew . delVelDT = dtDelVel0 ;
} else {
lastImuSwitchState = IMUSWITCH_IMU1 ;
// Get data from IMU 1
imuDataNew . delVel = delVel1 ;
imuDataNew . delVelDT = dtDelVel1 ;
}
} else if ( lastImuSwitchState = = IMUSWITCH_IMU0 ) {
2015-10-19 20:41:44 -03:00
// IMU 1 previously failed so require 5 m/s/s less noise on IMU 1 to switch
2015-10-19 02:46:49 -03:00
if ( imuNoiseFiltState0 - imuNoiseFiltState1 > 5.0f ) {
// IMU 1 is significantly less noisy, so switch
lastImuSwitchState = IMUSWITCH_IMU1 ;
// Get data from IMU 1
imuDataNew . delVel = delVel1 ;
imuDataNew . delVelDT = dtDelVel1 ;
}
} else {
2015-10-19 20:41:44 -03:00
// IMU 0 previously failed so require 5 m/s/s less noise on IMU 0 to switch across
2015-10-19 02:46:49 -03:00
if ( imuNoiseFiltState1 - imuNoiseFiltState0 > 5.0f ) {
2015-10-19 20:41:44 -03:00
// IMU 0 is significantly less noisy, so switch
2015-10-19 02:46:49 -03:00
lastImuSwitchState = IMUSWITCH_IMU0 ;
// Get data from IMU 0
imuDataNew . delVel = delVel0 ;
imuDataNew . delVelDT = dtDelVel0 ;
}
}
} else {
lastImuSwitchState = IMUSWITCH_MIXED ;
// Use a blend of both accelerometers
imuDataNew . delVel = ( delVel0 + delVel1 ) * 0.5f ;
imuDataNew . delVelDT = ( dtDelVel0 + dtDelVel1 ) * 0.5f ;
}
} else {
// single accel mode - one of the first two accelerometers are unhealthy, not available or de-selected by the user
// set the switch state based on the IMU we are using to make the data source selection visible
if ( ins . use_accel ( 0 ) ) {
readDeltaVelocity ( 0 , imuDataNew . delVel , imuDataNew . delVelDT ) ;
lastImuSwitchState = IMUSWITCH_IMU0 ;
} else if ( ins . use_accel ( 1 ) ) {
readDeltaVelocity ( 1 , imuDataNew . delVel , imuDataNew . delVelDT ) ;
lastImuSwitchState = IMUSWITCH_IMU1 ;
} else {
readDeltaVelocity ( ins . get_primary_accel ( ) , imuDataNew . delVel , imuDataNew . delVelDT ) ;
switch ( ins . get_primary_accel ( ) ) {
case 0 :
lastImuSwitchState = IMUSWITCH_IMU0 ;
break ;
case 1 :
lastImuSwitchState = IMUSWITCH_IMU1 ;
break ;
default :
2015-10-19 20:41:44 -03:00
// we must be using an IMU which can't be properly represented so we set to "mixed"
2015-10-19 02:46:49 -03:00
lastImuSwitchState = IMUSWITCH_MIXED ;
break ;
}
}
}
2015-10-06 18:20:43 -03:00
2015-10-19 02:46:49 -03:00
// Get delta angle data from promary gyro
2015-10-06 18:20:43 -03:00
readDeltaAngle ( ins . get_primary_gyro ( ) , imuDataNew . delAng ) ;
imuDataNew . delAngDT = max ( ins . get_delta_time ( ) , 1.0e-4 f ) ;
// get current time stamp
imuDataNew . time_ms = imuSampleTime_ms ;
// save data in the FIFO buffer
StoreIMU ( ) ;
// extract the oldest available data from the FIFO buffer
imuDataDelayed = storedIMU [ fifoIndexDelayed ] ;
}
// store imu in the FIFO
void NavEKF2_core : : StoreIMU ( )
{
2015-10-20 20:10:11 -03:00
// increment the index and write new data
2015-10-06 18:20:43 -03:00
fifoIndexNow = fifoIndexNow + 1 ;
if ( fifoIndexNow > = IMU_BUFFER_LENGTH ) {
fifoIndexNow = 0 ;
}
storedIMU [ fifoIndexNow ] = imuDataNew ;
2015-10-20 20:10:11 -03:00
// set the index required to access the oldest data
fifoIndexDelayed = fifoIndexNow + 1 ;
if ( fifoIndexDelayed > = IMU_BUFFER_LENGTH ) {
fifoIndexDelayed = 0 ;
}
2015-10-06 18:20:43 -03:00
}
// reset the stored imu history and store the current value
void NavEKF2_core : : StoreIMU_reset ( )
{
// write current measurement to entire table
for ( uint8_t i = 0 ; i < IMU_BUFFER_LENGTH ; i + + ) {
storedIMU [ i ] = imuDataNew ;
}
imuDataDelayed = imuDataNew ;
fifoIndexDelayed = fifoIndexNow + 1 ;
if ( fifoIndexDelayed > = IMU_BUFFER_LENGTH ) {
fifoIndexDelayed = 0 ;
}
}
// recall IMU data from the FIFO
void NavEKF2_core : : RecallIMU ( )
{
imuDataDelayed = storedIMU [ fifoIndexDelayed ] ;
}
bool NavEKF2_core : : readDeltaVelocity ( uint8_t ins_index , Vector3f & dVel , float & dVel_dt ) {
const AP_InertialSensor & ins = _ahrs - > get_ins ( ) ;
if ( ins_index < ins . get_accel_count ( ) ) {
ins . get_delta_velocity ( ins_index , dVel ) ;
dVel_dt = max ( ins . get_delta_velocity_dt ( ins_index ) , 1.0e-4 f ) ;
return true ;
}
return false ;
}
/********************************************************
* Global Position Measurement *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// check for new valid GPS data and update stored measurement if available
void NavEKF2_core : : readGpsData ( )
{
// check for new GPS data
2015-10-20 23:46:36 -03:00
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer
if ( _ahrs - > get_gps ( ) . last_message_time_ms ( ) - lastTimeGpsReceived_ms > 70 ) {
2015-10-08 20:24:53 -03:00
if ( _ahrs - > get_gps ( ) . status ( ) > = AP_GPS : : GPS_OK_FIX_3D ) {
// report GPS fix status
gpsCheckStatus . bad_fix = false ;
// store fix time from previous read
secondLastGpsTime_ms = lastTimeGpsReceived_ms ;
// get current fix time
lastTimeGpsReceived_ms = _ahrs - > get_gps ( ) . last_message_time_ms ( ) ;
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
// ideally we should be using a timing signal from the GPS receiver to set this time
gpsDataNew . time_ms = lastTimeGpsReceived_ms - frontend . _gpsDelay_ms ;
2015-10-15 09:01:04 -03:00
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
gpsDataNew . time_ms = roundToNearest ( gpsDataNew . time_ms , frontend . fusionTimeStep_ms ) ;
2015-10-18 19:11:58 -03:00
// Prevent time delay exceeding age of oldest IMU data in the buffer
gpsDataNew . time_ms = max ( gpsDataNew . time_ms , imuDataDelayed . time_ms ) ;
2015-10-08 20:24:53 -03:00
// read the NED velocity from the GPS
gpsDataNew . vel = _ahrs - > get_gps ( ) . velocity ( ) ;
// Use the speed accuracy from the GPS if available, otherwise set it to zero.
// Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data
float alpha = constrain_float ( 0.0002f * ( lastTimeGpsReceived_ms - secondLastGpsTime_ms ) , 0.0f , 1.0f ) ;
gpsSpdAccuracy * = ( 1.0f - alpha ) ;
float gpsSpdAccRaw ;
if ( ! _ahrs - > get_gps ( ) . speed_accuracy ( gpsSpdAccRaw ) ) {
gpsSpdAccuracy = 0.0f ;
} else {
gpsSpdAccuracy = max ( gpsSpdAccuracy , gpsSpdAccRaw ) ;
}
2015-10-06 18:20:43 -03:00
2015-10-08 20:24:53 -03:00
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
if ( _ahrs - > get_gps ( ) . num_sats ( ) > = 6 & & ( PV_AidingMode = = AID_ABSOLUTE ) ) {
gpsNoiseScaler = 1.0f ;
} else if ( _ahrs - > get_gps ( ) . num_sats ( ) = = 5 & & ( PV_AidingMode = = AID_ABSOLUTE ) ) {
gpsNoiseScaler = 1.4f ;
} else { // <= 4 satellites or in constant position mode
gpsNoiseScaler = 2.0f ;
}
2015-10-06 18:20:43 -03:00
2015-10-08 20:24:53 -03:00
// Check if GPS can output vertical velocity and set GPS fusion mode accordingly
if ( _ahrs - > get_gps ( ) . have_vertical_velocity ( ) & & frontend . _fusionModeGPS = = 0 ) {
useGpsVertVel = true ;
} else {
useGpsVertVel = false ;
}
2015-10-06 18:20:43 -03:00
2015-10-08 20:24:53 -03:00
// Monitor quality of the GPS velocity data before and after alignment using separate checks
if ( PV_AidingMode ! = AID_ABSOLUTE ) {
// Pre-alignment checks
2015-10-20 05:49:13 -03:00
gpsGoodToAlign = calcGpsGoodToAlign ( ) ;
2015-10-08 20:24:53 -03:00
} else {
// Post-alignment checks
calcGpsGoodForFlight ( ) ;
}
2015-10-06 18:20:43 -03:00
2015-10-08 20:24:53 -03:00
// read latitutde and longitude from GPS and convert to local NE position relative to the stored origin
// If we don't have an origin, then set it to the current GPS coordinates
const struct Location & gpsloc = _ahrs - > get_gps ( ) . location ( ) ;
if ( validOrigin ) {
gpsDataNew . pos = location_diff ( EKF_origin , gpsloc ) ;
2015-10-20 05:49:13 -03:00
} else if ( gpsGoodToAlign ) {
2015-10-08 20:24:53 -03:00
// Set the NE origin to the current GPS position
setOrigin ( ) ;
// Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly
alignMagStateDeclination ( ) ;
// Set the height of the NED origin to ‘ height of baro height datum relative to GPS height datum'
EKF_origin . alt = gpsloc . alt - baroDataNew . hgt ;
// We are by definition at the origin at the instant of alignment so set NE position to zero
gpsDataNew . pos . zero ( ) ;
// If GPS useage isn't explicitly prohibited, we switch to absolute position mode
if ( isAiding & & frontend . _fusionModeGPS ! = 3 ) {
PV_AidingMode = AID_ABSOLUTE ;
// Initialise EKF position and velocity states
ResetPosition ( ) ;
ResetVelocity ( ) ;
}
2015-10-06 18:20:43 -03:00
}
2015-10-08 20:24:53 -03:00
// save measurement to buffer to be fused later
StoreGPS ( ) ;
2015-10-06 18:20:43 -03:00
2015-10-08 20:24:53 -03:00
// declare GPS available for use
gpsNotAvailable = false ;
} else {
// report GPS fix status
gpsCheckStatus . bad_fix = true ;
}
2015-10-06 18:20:43 -03:00
}
// We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon
// If that happens we need to put the filter into a constant position mode, reset the velocity states to zero
// and use the last estimated position as a synthetic GPS position
// check if we can use opticalflow as a backup
bool optFlowBackupAvailable = ( flowDataValid & & ! hgtTimeout ) ;
// Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift
uint16_t gpsRetryTimeout_ms = useAirspeed ( ) ? frontend . gpsRetryTimeUseTAS_ms : frontend . gpsRetryTimeNoTAS_ms ;
// Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode
uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend . gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms ;
// If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out
if ( imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms ) {
2015-10-29 03:57:56 -03:00
// Let other processes know that GPS is not available and that a timeout has occurred
2015-10-06 18:20:43 -03:00
posTimeout = true ;
velTimeout = true ;
gpsNotAvailable = true ;
2015-10-29 03:57:56 -03:00
// If we are totally reliant on GPS for navigation, then we need to switch to a non-GPS mode of operation
// If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode.
// If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode.
if ( PV_AidingMode = = AID_ABSOLUTE & & ! useAirspeed ( ) & & ! assume_zero_sideslip ( ) ) {
if ( optFlowBackupAvailable ) {
// we can do optical flow only nav
frontend . _fusionModeGPS = 3 ;
PV_AidingMode = AID_RELATIVE ;
} else {
// store the current position
lastKnownPositionNE . x = stateStruct . position . x ;
lastKnownPositionNE . y = stateStruct . position . y ;
2015-10-06 18:20:43 -03:00
2015-10-29 03:57:56 -03:00
// put the filter into constant position mode
PV_AidingMode = AID_NONE ;
2015-10-06 18:20:43 -03:00
2015-10-29 03:57:56 -03:00
// Reset the velocity and position states
ResetVelocity ( ) ;
ResetPosition ( ) ;
2015-10-06 18:20:43 -03:00
2015-10-29 07:46:26 -03:00
// Reset the normalised innovation to avoid false failing bad fusion tests
2015-10-29 03:57:56 -03:00
velTestRatio = 0.0f ;
posTestRatio = 0.0f ;
2015-10-06 18:20:43 -03:00
}
}
}
}
// store GPS data in a history array
void NavEKF2_core : : StoreGPS ( )
{
if ( gpsStoreIndex > = OBS_BUFFER_LENGTH ) {
gpsStoreIndex = 0 ;
}
storedGPS [ gpsStoreIndex ] = gpsDataNew ;
gpsStoreIndex + = 1 ;
}
// return newest un-used GPS data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core : : RecallGPS ( )
{
gps_elements dataTemp ;
gps_elements dataTempZero ;
dataTempZero . time_ms = 0 ;
uint32_t temp_ms = 0 ;
2015-10-20 23:44:14 -03:00
uint8_t bestIndex ;
2015-10-06 18:20:43 -03:00
for ( uint8_t i = 0 ; i < OBS_BUFFER_LENGTH ; i + + ) {
dataTemp = storedGPS [ i ] ;
// find a measurement older than the fusion time horizon that we haven't checked before
if ( dataTemp . time_ms ! = 0 & & dataTemp . time_ms < = imuDataDelayed . time_ms ) {
// Find the most recent non-stale measurement that meets the time horizon criteria
if ( ( ( imuDataDelayed . time_ms - dataTemp . time_ms ) < 500 ) & & dataTemp . time_ms > temp_ms ) {
gpsDataDelayed = dataTemp ;
temp_ms = dataTemp . time_ms ;
2015-10-20 23:44:14 -03:00
bestIndex = i ;
2015-10-06 18:20:43 -03:00
}
}
}
if ( temp_ms ! = 0 ) {
2015-10-20 23:44:14 -03:00
// zero the time stamp for that piece of data so we won't use it again
storedGPS [ bestIndex ] = dataTempZero ;
2015-10-06 18:20:43 -03:00
return true ;
} else {
return false ;
}
}
bool NavEKF2_core : : readDeltaAngle ( uint8_t ins_index , Vector3f & dAng ) {
const AP_InertialSensor & ins = _ahrs - > get_ins ( ) ;
if ( ins_index < ins . get_gyro_count ( ) ) {
ins . get_delta_angle ( ins_index , dAng ) ;
return true ;
}
return false ;
}
/********************************************************
* Height Measurements *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// check for new altitude measurement data and update stored measurement if available
void NavEKF2_core : : readHgtData ( )
{
// check to see if baro measurement has changed so we know if a new measurement has arrived
2015-10-20 23:46:36 -03:00
// do not accept data at a faster rate than 14Hz to avoid overflowing the FIFO buffer
if ( _baro . get_last_update ( ) - lastHgtReceived_ms > 70 ) {
2015-10-06 18:20:43 -03:00
// Don't use Baro height if operating in optical flow mode as we use range finder instead
if ( frontend . _fusionModeGPS = = 3 & & frontend . _altSource = = 1 ) {
if ( ( imuSampleTime_ms - rngValidMeaTime_ms ) < 2000 ) {
// adjust range finder measurement to allow for effect of vehicle tilt and height of sensor
baroDataNew . hgt = max ( rngMea * Tnb_flow . c . z , rngOnGnd ) ;
// calculate offset to baro data that enables baro to be used as a backup
// filter offset to reduce effect of baro noise and other transient errors on estimate
baroHgtOffset = 0.1f * ( _baro . get_altitude ( ) + stateStruct . position . z ) + 0.9f * baroHgtOffset ;
} else if ( isAiding & & takeOffDetected ) {
2015-10-13 20:07:51 -03:00
// we have lost range finder measurements and are in optical flow flight
2015-10-06 18:20:43 -03:00
// use baro measurement and correct for baro offset - failsafe use only as baro will drift
baroDataNew . hgt = max ( _baro . get_altitude ( ) - baroHgtOffset , rngOnGnd ) ;
} else {
// If we are on ground and have no range finder reading, assume the nominal on-ground height
baroDataNew . hgt = rngOnGnd ;
// calculate offset to baro data that enables baro to be used as a backup
// filter offset to reduce effect of baro noise and other transient errors on estimate
baroHgtOffset = 0.1f * ( _baro . get_altitude ( ) + stateStruct . position . z ) + 0.9f * baroHgtOffset ;
}
} else {
2015-10-13 20:07:51 -03:00
// Normal operation is to use baro measurement
2015-10-06 18:20:43 -03:00
baroDataNew . hgt = _baro . get_altitude ( ) ;
}
// filtered baro data used to provide a reference for takeoff
// it is is reset to last height measurement on disarming in performArmingChecks()
if ( ! getTakeoffExpected ( ) ) {
const float gndHgtFiltTC = 0.5f ;
const float dtBaro = frontend . hgtAvg_ms * 1.0e-3 f ;
float alpha = constrain_float ( dtBaro / ( dtBaro + gndHgtFiltTC ) , 0.0f , 1.0f ) ;
meaHgtAtTakeOff + = ( baroDataDelayed . hgt - meaHgtAtTakeOff ) * alpha ;
} else if ( isAiding & & getTakeoffExpected ( ) ) {
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
// This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
baroDataNew . hgt = max ( baroDataNew . hgt , meaHgtAtTakeOff ) ;
}
// time stamp used to check for new measurement
lastHgtReceived_ms = _baro . get_last_update ( ) ;
// estimate of time height measurement was taken, allowing for delays
2015-10-18 19:11:58 -03:00
baroDataNew . time_ms = lastHgtReceived_ms - frontend . _hgtDelay_ms ;
2015-10-06 18:20:43 -03:00
2015-10-15 09:01:04 -03:00
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
2015-10-18 19:11:58 -03:00
baroDataNew . time_ms = roundToNearest ( baroDataNew . time_ms , frontend . fusionTimeStep_ms ) ;
// Prevent time delay exceeding age of oldest IMU data in the buffer
baroDataNew . time_ms = max ( baroDataNew . time_ms , imuDataDelayed . time_ms ) ;
2015-10-15 09:01:04 -03:00
2015-10-06 18:20:43 -03:00
// save baro measurement to buffer to be fused later
StoreBaro ( ) ;
}
}
// store baro in a history array
void NavEKF2_core : : StoreBaro ( )
{
if ( baroStoreIndex > = OBS_BUFFER_LENGTH ) {
baroStoreIndex = 0 ;
}
storedBaro [ baroStoreIndex ] = baroDataNew ;
baroStoreIndex + = 1 ;
}
// return newest un-used baro data that has fallen behind the fusion time horizon
// if no un-used data is available behind the fusion horizon, return false
bool NavEKF2_core : : RecallBaro ( )
{
baro_elements dataTemp ;
baro_elements dataTempZero ;
dataTempZero . time_ms = 0 ;
uint32_t temp_ms = 0 ;
2015-10-20 23:44:14 -03:00
uint8_t bestIndex = 0 ;
2015-10-06 18:20:43 -03:00
for ( uint8_t i = 0 ; i < OBS_BUFFER_LENGTH ; i + + ) {
dataTemp = storedBaro [ i ] ;
// find a measurement older than the fusion time horizon that we haven't checked before
if ( dataTemp . time_ms ! = 0 & & dataTemp . time_ms < = imuDataDelayed . time_ms ) {
// Find the most recent non-stale measurement that meets the time horizon criteria
if ( ( ( imuDataDelayed . time_ms - dataTemp . time_ms ) < 500 ) & & dataTemp . time_ms > temp_ms ) {
baroDataDelayed = dataTemp ;
temp_ms = dataTemp . time_ms ;
2015-10-20 23:44:14 -03:00
bestIndex = i ;
2015-10-06 18:20:43 -03:00
}
}
}
if ( temp_ms ! = 0 ) {
2015-10-20 23:44:14 -03:00
// zero the time stamp for that piece of data so we won't use it again
storedBaro [ bestIndex ] = dataTempZero ;
2015-10-06 18:20:43 -03:00
return true ;
} else {
return false ;
}
}
/********************************************************
* Air Speed Measurements *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// check for new airspeed data and update stored measurements if available
void NavEKF2_core : : readAirSpdData ( )
{
// if airspeed reading is valid and is set by the user to be used and has been updated then
// we take a new reading, convert from EAS to TAS and set the flag letting other functions
// know a new measurement is available
const AP_Airspeed * aspeed = _ahrs - > get_airspeed ( ) ;
if ( aspeed & &
aspeed - > use ( ) & &
aspeed - > last_update_ms ( ) ! = timeTasReceived_ms ) {
tasDataNew . tas = aspeed - > get_airspeed ( ) * aspeed - > get_EAS2TAS ( ) ;
timeTasReceived_ms = aspeed - > last_update_ms ( ) ;
tasDataNew . time_ms = timeTasReceived_ms - frontend . tasDelay_ms ;
2015-10-15 09:01:04 -03:00
// Assign measurement to nearest fusion interval so that multiple measurements can be fused on the same frame
// This allows us to perform the covariance prediction over longer time steps which reduces numerical precision errors
tasDataNew . time_ms = roundToNearest ( tasDataNew . time_ms , frontend . fusionTimeStep_ms ) ;
2015-10-06 18:20:43 -03:00
newDataTas = true ;
StoreTAS ( ) ;
RecallTAS ( ) ;
} else {
newDataTas = false ;
}
}
2015-10-15 09:01:04 -03:00
// Round to the nearest multiple of a integer
uint32_t NavEKF2_core : : roundToNearest ( uint32_t dividend , uint32_t divisor )
{
return ( ( uint32_t ) round ( ( float ) dividend / float ( divisor ) ) ) * divisor ;
}
2015-10-07 15:27:09 -03:00
# endif // HAL_CPU_CLASS