ardupilot/libraries/AC_WPNav/AC_WPNav.cpp

387 lines
14 KiB
C++
Raw Normal View History

2013-03-20 03:27:26 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include <AC_WPNav.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// index 0 was used for the old orientation matrix
// @Param: SPEED
// @DisplayName: Speed in cm/s to travel between waypoints
// @Description: The desired horizontal speed in cm/s while travelling between waypoints
// @Range: 0 1000
// @Increment: 50
AP_GROUPINFO("SPEED", 0, AC_WPNav, _speed_cms, WP_SPEED),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
2013-03-21 06:28:10 -03:00
AC_WPNav::AC_WPNav(AP_InertialNav* inav, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_rate_lat, AC_PID* pid_rate_lon) :
2013-03-20 03:27:26 -03:00
_inav(inav),
_pid_pos_lat(pid_pos_lat),
_pid_pos_lon(pid_pos_lon),
2013-03-21 06:28:10 -03:00
_pid_rate_lat(pid_rate_lat),
_pid_rate_lon(pid_rate_lon),
_speedz_cms(MAX_CLIMB_VELOCITY),
_lean_angle_max(MAX_LEAN_ANGLE)
2013-03-20 03:27:26 -03:00
{
AP_Param::setup_object_defaults(this, var_info);
}
///
/// simple loiter controller
///
/// set_loiter_target - set initial loiter target based on current position and velocity
void AC_WPNav::set_loiter_target(const Vector3f& position, const Vector3f& velocity)
{
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt.
float linear_velocity; // the velocity we swap between linear and sqrt.
float vel_total;
float target_dist;
// avoid divide by zero
if( _pid_pos_lat->kP() <= 0.1 ) {
set_loiter_target(position);
return;
}
// calculate point at which velocity switches from linear to sqrt
linear_velocity = MAX_LOITER_POS_ACCEL/_pid_pos_lat->kP();
// calculate total current velocity
vel_total = safe_sqrt(velocity.x*velocity.x + velocity.y*velocity.y);
// calculate distance within which we can stop
if (vel_total < linear_velocity) {
target_dist = vel_total/_pid_pos_lat->kP();
} else {
linear_distance = MAX_LOITER_POS_ACCEL/(2*_pid_pos_lat->kP()*_pid_pos_lat->kP());
target_dist = linear_distance + (vel_total*vel_total)/(2*MAX_LOITER_POS_ACCEL);
}
target_dist = constrain(target_dist, 0, MAX_LOITER_OVERSHOOT);
_target.x = position.x + (target_dist * velocity.x / vel_total);
_target.y = position.y + (target_dist * velocity.y / vel_total);
}
2013-03-20 03:27:26 -03:00
/// move_loiter_target - move loiter target by velocity provided in front/right directions in cm/s
void AC_WPNav::move_loiter_target(float vel_forward_cms, float vel_right_cms, float dt)
2013-03-20 03:27:26 -03:00
{
_pilot_vel_forward_cms = vel_forward_cms;
_pilot_vel_right_cms = vel_right_cms;
}
/// translate_loiter_target_movements - consumes adjustments created by move_loiter_target
void AC_WPNav::translate_loiter_target_movements(float nav_dt)
{
Vector2f target_vel_adj; // make 2d vector?
float vel_delta_total;
float vel_max;
float vel_total;
// range check nav_dt
if( nav_dt < 0 ) {
return;
}
// rotate pilot input to lat/lon frame
target_vel_adj.x = (_pilot_vel_forward_cms*_cos_yaw - _pilot_vel_right_cms*_sin_yaw) - _target_vel.x;
target_vel_adj.y = (_pilot_vel_forward_cms*_sin_yaw + _pilot_vel_right_cms*_cos_yaw) - _target_vel.y;
// constrain the velocity vector and scale if necessary
vel_delta_total = safe_sqrt(target_vel_adj.x*target_vel_adj.x + target_vel_adj.y*target_vel_adj.y);
vel_max = MAX_LOITER_POS_ACCEL*nav_dt;
if( vel_delta_total > vel_max) {
target_vel_adj.x = vel_max * target_vel_adj.x/vel_delta_total;
target_vel_adj.y = vel_max * target_vel_adj.y/vel_delta_total;
}
2013-03-20 03:27:26 -03:00
// add desired change in velocity to current target velocity
_target_vel.x += target_vel_adj.x;
_target_vel.y += target_vel_adj.y;
2013-03-20 03:27:26 -03:00
// constrain the velocity vector and scale if necessary
vel_total = safe_sqrt(_target_vel.x*_target_vel.x + _target_vel.y*_target_vel.y);
2013-03-20 03:27:26 -03:00
if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) {
_target_vel.x = MAX_LOITER_POS_VEL_VELOCITY * _target_vel.x/vel_total;
_target_vel.y = MAX_LOITER_POS_VEL_VELOCITY * _target_vel.y/vel_total;
2013-03-20 03:27:26 -03:00
}
// update target position
_target.x += _target_vel.x * nav_dt;
_target.y += _target_vel.y * nav_dt;
2013-03-20 03:27:26 -03:00
}
/// get_distance_to_target - get horizontal distance to loiter target in cm
float AC_WPNav::get_distance_to_target()
{
return _distance_to_target;
}
/// get_bearing_to_target - get bearing to loiter target in centi-degrees
int32_t AC_WPNav::get_bearing_to_target()
{
return get_bearing_cd(_inav->get_position(), _target);
}
/// update_loiter - run the loiter controller - should be called at 10hz
void AC_WPNav::update_loiter()
{
uint32_t now = hal.scheduler->millis();
2013-03-21 06:28:10 -03:00
float dt = (now - _last_update) / 1000.0f;
_last_update = now;
// catch if we've just been started
if( dt >= 1.0 ) {
dt = 0.0;
reset_I();
_target_vel.x = 0;
_target_vel.y = 0;
}
// translate any adjustments from pilot to loiter target
translate_loiter_target_movements(dt);
// run loiter position controller
get_loiter_pos_lat_lon(_target.x, _target.y, dt);
}
2013-03-20 03:27:26 -03:00
///
/// waypoint navigation
///
/// set_destination - set destination using cm from home
void AC_WPNav::set_destination(const Vector3f& destination)
{
set_origin_and_destination(_inav->get_position(), destination);
}
/// set_origin_and_destination - set origin and destination using lat/lon coordinates
void AC_WPNav::set_origin_and_destination(const Vector3f& origin, const Vector3f& destination)
{
_origin = origin;
_destination = destination;
_pos_delta_unit = _destination - _origin;
_track_length = _pos_delta_unit.length();
_pos_delta_unit = _pos_delta_unit/_track_length;
_hoz_track_ratio = _track_length / sqrt(_pos_delta_unit.x*_pos_delta_unit.x + _pos_delta_unit.y*_pos_delta_unit.y);
_vert_track_ratio = _track_length / _pos_delta_unit.z;
2013-03-20 03:27:26 -03:00
_track_desired = 0;
}
/// advance_target_along_track - move target location along track from origin to destination
void AC_WPNav::advance_target_along_track(float velocity_cms, float dt)
{
float cross_track_dist;
float track_covered;
float track_desired_max;
float alt_error;
2013-03-20 03:27:26 -03:00
// get current location
Vector3f curr = _inav->get_position();
// limit velocity to maximum possible
velocity_cms = min(velocity_cms, _speed_cms) * _hoz_track_ratio;
velocity_cms = min(velocity_cms, _speedz_cms * _vert_track_ratio);
2013-03-20 03:27:26 -03:00
// check for zero length segment
if( _pos_delta_unit.x == 0 && _pos_delta_unit.y == 0 ) {
2013-03-20 03:27:26 -03:00
_target = _destination;
return;
}
track_covered = (curr.x-_origin.x) * _pos_delta_unit.x + (curr.y-_origin.y) * _pos_delta_unit.y + (curr.z-_origin.z) * _pos_delta_unit.z;
cross_track_dist = -(curr.x-_origin.x) * _pos_delta_unit.y + (curr.y-_origin.y) * _pos_delta_unit.x;
alt_error = fabsf(_origin.z + _pos_delta_unit.z * track_covered - curr.z);
2013-03-20 03:27:26 -03:00
// maximum distance along the track that we will allow (stops target point from getting too far from the current position)
track_desired_max = track_covered + min( safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR - cross_track_dist*cross_track_dist) * _hoz_track_ratio, (750-alt_error) * _vert_track_ratio);
2013-03-20 03:27:26 -03:00
// advance the current target
_track_desired += velocity_cms * dt;
// constrain the target from moving too far
if( _track_desired > track_desired_max ) {
_track_desired = track_desired_max;
}
if( _track_desired > _track_length ) {
_track_desired = _track_length;
}
// recalculate the desired position
_target.x = _origin.x + _pos_delta_unit.x * _track_desired;
_target.y = _origin.y + _pos_delta_unit.y * _track_desired;
_target.z = _origin.z + _pos_delta_unit.z * _track_desired;
2013-03-20 03:27:26 -03:00
}
/// get_distance_to_destination - get horizontal distance to destination in cm
float AC_WPNav::get_distance_to_destination()
2013-03-20 03:27:26 -03:00
{
// get current location
Vector3f curr = _inav->get_position();
return pythagorous2(_destination.x-curr.x,_destination.y-curr.y);
}
2013-03-20 03:27:26 -03:00
/// get_bearing_to_destination - get bearing to next waypoint in centi-degrees
int32_t AC_WPNav::get_bearing_to_destination()
{
return get_bearing_cd(_inav->get_position(), _destination);
}
2013-03-20 03:27:26 -03:00
/// update_wpnav - run the wp controller - should be called at 10hz
void AC_WPNav::update_wpnav()
{
uint32_t now = hal.scheduler->millis();
2013-03-21 06:28:10 -03:00
float dt = (now - _last_update) / 1000.0f;
_last_update = now;
// catch if we've just been started
if( dt >= 1.0 ) {
dt = 0.0;
reset_I();
}else{
// advance the target if necessary
2013-03-20 03:27:26 -03:00
advance_target_along_track(_speed_cms, dt);
}
// run loiter position controller
get_loiter_pos_lat_lon(_target.x, _target.y, dt);
}
///
/// shared methods
///
2013-03-20 03:27:26 -03:00
// get_loiter_pos_lat_lon - loiter position controller
// converts desired position provided as distance from home in lat/lon directions to desired velocity
void AC_WPNav::get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t target_lon_from_home, float dt)
{
float dist_error_lat;
int32_t desired_vel_lat;
float dist_error_lon;
int32_t desired_vel_lon;
int32_t dist_error_total;
int16_t vel_sqrt;
int32_t vel_total;
int16_t linear_distance; // the distace we swap between linear and sqrt.
// calculate distance error
dist_error_lat = target_lat_from_home - _inav->get_latitude_diff();
dist_error_lon = target_lon_from_home - _inav->get_longitude_diff();
linear_distance = MAX_LOITER_POS_ACCEL/(2*_pid_pos_lat->kP()*_pid_pos_lat->kP());
_distance_to_target = linear_distance; // for reporting purposes
2013-03-20 03:27:26 -03:00
dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon);
if( dist_error_total > 2*linear_distance ) {
vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000);
desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total;
desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total;
}else{
desired_vel_lat = _pid_pos_lat->get_p(dist_error_lat);
desired_vel_lon = _pid_pos_lon->get_p(dist_error_lon);
}
vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon);
if( vel_total > MAX_LOITER_POS_VELOCITY ) {
desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total;
desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total;
}
get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon, dt);
}
// get_loiter_vel_lat_lon - loiter velocity controller
// converts desired velocities in lat/lon frame to accelerations in lat/lon frame
void AC_WPNav::get_loiter_vel_lat_lon(float vel_lat, float vel_lon, float dt)
2013-03-20 03:27:26 -03:00
{
Vector3f vel_curr = _inav->get_velocity(); // current velocity in cm/s
Vector3f vel_error; // The velocity error in cm/s.
Vector2f desired_accel; // the resulting desired acceleration
float accel_total; // total acceleration in cm/s/s
// reset last velocity if this controller has just been engaged or dt is zero
if( dt == 0.0 ) {
desired_accel.x = 0;
desired_accel.y = 0;
} else {
// feed forward desired acceleration calculation
desired_accel.x = (vel_lat - _vel_last.x)/dt;
desired_accel.y = (vel_lon - _vel_last.y)/dt;
}
2013-03-20 03:27:26 -03:00
// store this iteration's velocities for the next iteration
_vel_last.x = vel_lat;
_vel_last.y = vel_lon;
2013-03-20 03:27:26 -03:00
// calculate velocity error
vel_error.x = vel_lat - vel_curr.x;
vel_error.y = vel_lon - vel_curr.y;
2013-03-20 03:27:26 -03:00
// combine feed foward accel with PID outpu from velocity error
desired_accel.x += _pid_rate_lat->get_pid(vel_error.x, dt);
desired_accel.y += _pid_rate_lon->get_pid(vel_error.y, dt);
2013-03-20 03:27:26 -03:00
// scale desired acceleration if it's beyond acceptable limit
accel_total = safe_sqrt(desired_accel.x*desired_accel.x + desired_accel.y*desired_accel.y);
2013-03-20 03:27:26 -03:00
if( accel_total > MAX_LOITER_VEL_ACCEL ) {
desired_accel.x = MAX_LOITER_VEL_ACCEL * desired_accel.x/accel_total;
desired_accel.y = MAX_LOITER_VEL_ACCEL * desired_accel.y/accel_total;
2013-03-20 03:27:26 -03:00
}
// call accel based controller with desired acceleration
get_loiter_accel_lat_lon(desired_accel.x, desired_accel.y);
2013-03-20 03:27:26 -03:00
}
// get_loiter_accel_lat_lon - loiter acceration controller
// converts desired accelerations provided in lat/lon frame to roll/pitch angles
void AC_WPNav::get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon)
{
float z_accel_meas = -AP_INTERTIALNAV_GRAVITY * 100; // gravity in cm/s/s
float accel_forward;
float accel_right;
// To-Do: add 1hz filter to accel_lat, accel_lon
2013-03-20 03:27:26 -03:00
// rotate accelerations into body forward-right frame
accel_forward = accel_lat*_cos_yaw + accel_lon*_sin_yaw;
accel_right = -accel_lat*_sin_yaw + accel_lon*_cos_yaw;
// update angle targets that will be passed to stabilize controller
_desired_roll = constrain((accel_right/(-z_accel_meas))*(18000/M_PI), -_lean_angle_max, _lean_angle_max);
_desired_pitch = constrain((-accel_forward/(-z_accel_meas*_cos_roll))*(18000/M_PI), -_lean_angle_max, _lean_angle_max);
2013-03-20 03:27:26 -03:00
}
// get_bearing_cd - return bearing in centi-degrees between two positions
// To-Do: move this to math library
float AC_WPNav::get_bearing_cd(const Vector3f origin, const Vector3f destination)
{
float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f;
if (bearing < 0) {
bearing += 36000;
}
return bearing;
}
/// reset_I - clears I terms from loiter PID controller
void AC_WPNav::reset_I()
{
_pid_pos_lon->reset_I();
_pid_pos_lat->reset_I();
_pid_rate_lon->reset_I();
_pid_rate_lat->reset_I();
// set last velocity to current velocity
_vel_last = _inav->get_velocity();
}