AC_WPNav: first implementation

This commit is contained in:
Randy Mackay 2013-03-20 15:27:26 +09:00
parent 8d2cf6f3e5
commit b92c4097d2
6 changed files with 489 additions and 0 deletions

View File

@ -0,0 +1,271 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#include <AC_WPNav.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AC_WPNav::var_info[] PROGMEM = {
// index 0 was used for the old orientation matrix
// @Param: SPEED
// @DisplayName: Speed in cm/s to travel between waypoints
// @Description: The desired horizontal speed in cm/s while travelling between waypoints
// @Range: 0 1000
// @Increment: 50
AP_GROUPINFO("SPEED", 0, AC_WPNav, _speed_cms, WP_SPEED),
AP_GROUPEND
};
// Default constructor.
// Note that the Vector/Matrix constructors already implicitly zero
// their values.
//
AC_WPNav::AC_WPNav(AP_InertialNav* inav, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_lat_rate, AC_PID* pid_lon_rate) :
_inav(inav),
_pid_pos_lat(pid_pos_lat),
_pid_pos_lon(pid_pos_lon),
_pid_rate_lat(pid_lat_rate),
_pid_rate_lon(pid_lon_rate)
{
AP_Param::setup_object_defaults(this, var_info);
}
///
/// simple loiter controller
///
/// set_loiter_target in cm from home
void AC_WPNav::set_loiter_target(const Vector3f& position)
{
_state = WPNAV_STATE_LOITER;
_target = position;
}
/// move_loiter_target - move loiter target by velocity provided in front/right directions in cm/s
void AC_WPNav::move_loiter_target(int16_t vel_forward_cms, int16_t vel_right_cms, float dt)
{
int32_t vel_lat;
int32_t vel_lon;
int32_t vel_total;
vel_lat = vel_forward_cms*_cos_yaw - vel_right_cms*_sin_yaw;
vel_lon = vel_forward_cms*_sin_yaw + vel_right_cms*_cos_yaw;
// constrain the velocity vector and scale if necessary
vel_total = safe_sqrt(vel_lat*vel_lat + vel_lon*vel_lon);
if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) {
vel_lat = MAX_LOITER_POS_VEL_VELOCITY * vel_lat/vel_total;
vel_lon = MAX_LOITER_POS_VEL_VELOCITY * vel_lon/vel_total;
}
// update target position
_target.x += vel_lat * dt;
_target.y += vel_lon * dt;
}
///
/// waypoint navigation
///
/// set_destination - set destination using cm from home
void AC_WPNav::set_destination(const Vector3f& destination)
{
set_origin_and_destination(_inav->get_position(), destination);
}
/// set_origin_and_destination - set origin and destination using lat/lon coordinates
void AC_WPNav::set_origin_and_destination(const Vector3f& origin, const Vector3f& destination)
{
_state = WPNAV_STATE_WPNAV;
_origin = origin;
_destination = destination;
_pos_delta = _destination - _origin;
_track_length = _pos_delta.length();
_track_desired = 0;
}
/// advance_target_along_track - move target location along track from origin to destination
void AC_WPNav::advance_target_along_track(float velocity_cms, float dt)
{
float cross_track_dist;
float track_covered;
float track_desired_max;
float line_a, line_b, line_c, line_m;
// get current location
Vector3f curr = _inav->get_position();
// check for zero length segment
if( _pos_delta.x == 0 && _pos_delta.y == 0) {
_target = _destination;
return;
}
if( _pos_delta.x == 0 ) {
// x is zero
cross_track_dist = fabs(curr.x - _destination.x);
track_covered = fabs(curr.y - _origin.y);
}else if(_pos_delta.y == 0) {
// y is zero
cross_track_dist = fabs(curr.y - _destination.y);
track_covered = fabs(curr.x - _origin.x);
}else{
// both x and y non zero
line_a = _pos_delta.y;
line_b = -_pos_delta.x;
line_c = _pos_delta.x * _origin.y - _pos_delta.y * _origin.x;
line_m = line_a / line_b;
cross_track_dist = abs(line_a * curr.x + line_b * curr.y + line_c ) / _track_length;
line_m = 1/line_m;
line_a = line_m;
line_b = -1;
line_c = curr.y - line_m * curr.x;
// calculate the distance to the closest point along the track and it's distance from the origin
track_covered = abs(line_a*_origin.x + line_b*_origin.y + line_c) / safe_sqrt(line_a*line_a+line_b*line_b);
}
// maximum distance along the track that we will allow (stops target point from getting too far from the current position)
track_desired_max = track_covered + safe_sqrt(WPINAV_MAX_POS_ERROR*WPINAV_MAX_POS_ERROR-cross_track_dist*cross_track_dist);
// advance the current target
_track_desired += velocity_cms * dt;
// constrain the target from moving too far
if( _track_desired > track_desired_max ) {
_track_desired = track_desired_max;
}
if( _track_desired > _track_length ) {
_track_desired = _track_length;
}
// recalculate the desired position
float track_length_pct = _track_desired/_track_length;
_target.x = _origin.x + _pos_delta.x * track_length_pct;
_target.y = _origin.y + _pos_delta.y * track_length_pct;
}
///
/// shared methods
///
/// update - run the loiter and wpnav controllers - should be called at 10hz
void AC_WPNav::update()
{
float dt = hal.scheduler->millis() - _last_update;
// prevent run up in dt value
dt = min(dt, 1.0f);
// advance the target if necessary
if( _state == WPNAV_STATE_WPNAV ) {
advance_target_along_track(_speed_cms, dt);
}
// run loiter position controller
get_loiter_pos_lat_lon(_target.x, _target.y, dt);
}
// get_loiter_pos_lat_lon - loiter position controller
// converts desired position provided as distance from home in lat/lon directions to desired velocity
void AC_WPNav::get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t target_lon_from_home, float dt)
{
float dist_error_lat;
int32_t desired_vel_lat;
float dist_error_lon;
int32_t desired_vel_lon;
int32_t dist_error_total;
int16_t vel_sqrt;
int32_t vel_total;
int16_t linear_distance; // the distace we swap between linear and sqrt.
// calculate distance error
dist_error_lat = target_lat_from_home - _inav->get_latitude_diff();
dist_error_lon = target_lon_from_home - _inav->get_longitude_diff();
linear_distance = MAX_LOITER_POS_ACCEL/(2*_pid_pos_lat->kP()*_pid_pos_lat->kP());
dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon);
if( dist_error_total > 2*linear_distance ) {
vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000);
desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total;
desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total;
}else{
desired_vel_lat = _pid_pos_lat->get_p(dist_error_lat);
desired_vel_lon = _pid_pos_lon->get_p(dist_error_lon);
}
vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon);
if( vel_total > MAX_LOITER_POS_VELOCITY ) {
desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total;
desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total;
}
get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon, dt);
}
// get_loiter_vel_lat_lon - loiter velocity controller
// converts desired velocities in lat/lon frame to accelerations in lat/lon frame
void AC_WPNav::get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt)
{
float speed_error_lat = 0; // The velocity in cm/s.
float speed_error_lon = 0; // The velocity in cm/s.
float speed_lat = _inav->get_latitude_velocity();
float speed_lon = _inav->get_longitude_velocity();
int32_t accel_lat;
int32_t accel_lon;
int32_t accel_total;
int16_t lat_p,lat_i,lat_d;
int16_t lon_p,lon_i,lon_d;
// calculate vel error
speed_error_lat = vel_lat - speed_lat;
speed_error_lon = vel_lon - speed_lon;
lat_p = _pid_rate_lat->get_p(speed_error_lat);
lat_i = _pid_rate_lat->get_i(speed_error_lat, dt);
lat_d = _pid_rate_lat->get_d(speed_error_lat, dt);
lon_p = _pid_rate_lon->get_p(speed_error_lon);
lon_i = _pid_rate_lon->get_i(speed_error_lon, dt);
lon_d = _pid_rate_lon->get_d(speed_error_lon, dt);
accel_lat = (lat_p+lat_i+lat_d);
accel_lon = (lon_p+lon_i+lon_d);
accel_total = safe_sqrt(accel_lat*accel_lat + accel_lon*accel_lon);
if( accel_total > MAX_LOITER_VEL_ACCEL ) {
accel_lat = MAX_LOITER_VEL_ACCEL * accel_lat/accel_total;
accel_lon = MAX_LOITER_VEL_ACCEL * accel_lon/accel_total;
}
get_loiter_accel_lat_lon(accel_lat, accel_lon);
}
// get_loiter_accel_lat_lon - loiter acceration controller
// converts desired accelerations provided in lat/lon frame to roll/pitch angles
void AC_WPNav::get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon)
{
float z_accel_meas = -AP_INTERTIALNAV_GRAVITY * 100; // gravity in cm/s/s
float accel_forward;
float accel_right;
// rotate accelerations into body forward-right frame
accel_forward = accel_lat*_cos_yaw + accel_lon*_sin_yaw;
accel_right = -accel_lat*_sin_yaw + accel_lon*_cos_yaw;
// update angle targets that will be passed to stabilize controller
_desired_roll = constrain((accel_right/(-z_accel_meas))*(18000/M_PI), -4500, 4500);
_desired_pitch = constrain((-accel_forward/(-z_accel_meas*_cos_roll))*(18000/M_PI), -4500, 4500);
}

View File

@ -0,0 +1,129 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef AC_WPNAV_H
#define AC_WPNAV_H
#include <inttypes.h>
#include <AP_Common.h>
#include <AP_Param.h>
#include <AP_Math.h>
#include <AP_GPS.h> // ArduPilot GPS library
#include <AP_Baro.h> // ArduPilot Mega Barometer Library
#include <AC_PID.h> // PID library
#include <APM_PI.h> // PID library
#include <AP_InertialNav.h> // Inertial Navigation library
// loiter maximum velocities and accelerations
#define MAX_LOITER_POS_VELOCITY 750 // should be 1.5 ~ 2.0 times the pilot input's max velocity
#define MAX_LOITER_POS_ACCEL 250
#define MAX_LOITER_VEL_ACCEL 400 // should be 1.5 times larger than MAX_LOITER_POS_ACCEL
#define MAX_LOITER_POS_VEL_VELOCITY 1000
#define WPINAV_MAX_POS_ERROR 2000.0f // maximum distance (in cm) that the desired track can stray from our current location.
#define WP_SPEED 500 // default horizontal speed betwen waypoints in cm/s
// possible states
#define WPNAV_STATE_INACTIVE 0
#define WPNAV_STATE_LOITER 1
#define WPNAV_STATE_WPNAV 2
class AC_WPNav
{
public:
/// Constructor
AC_WPNav(AP_InertialNav* inav, APM_PI* pid_pos_lat, APM_PI* pid_pos_lon, AC_PID* pid_lat_rate, AC_PID* pid_lon_rate);
///
/// simple loiter controller
///
/// set_loiter_target in cm from home
void set_loiter_target(const Vector3f& position);
/// move_loiter_target - move destination using forward and right velocities in cm/s
void move_loiter_target(int16_t vel_forward_cms, int16_t vel_right_cms, float dt);
///
/// waypoint navigation
///
/// set_destination with distance from home in cm
void set_destination(const Vector3f& destination);
/// set_origin_and_destination - set origin and destination using lat/lon coordinates
void set_origin_and_destination(const Vector3f& origin, const Vector3f& destination);
/// advance_target_along_track - move target location along track from origin to destination
void advance_target_along_track(float velocity_cms, float dt);
///
/// shared methods
///
/// update - run the loiter and wpnav controllers - should be called at 10hz
void update(void);
/// get desired roll, pitch and altitude which should be fed into stabilize controllers
int32_t get_desired_roll() { return _desired_roll; };
int32_t get_desired_pitch() { return _desired_pitch; };
/// desired altitude (in cm) that should be fed into altitude hold controller. only valid when navigating between waypoints
int32_t get_desired_altitude() { return _desired_altitude; };
/// set_cos_sin_yaw - short-cut to save on calculations to convert from roll-pitch frame to lat-lon frame
void set_cos_sin_yaw(float cos_yaw, float sin_yaw, float cos_roll) {
_cos_yaw = cos_yaw;
_sin_yaw = sin_yaw;
_cos_roll = cos_roll;
}
static const struct AP_Param::GroupInfo var_info[];
protected:
/// get_loiter_pos_lat_lon - loiter position controller
/// converts desired position provided as distance from home in lat/lon directions to desired velocity
void get_loiter_pos_lat_lon(int32_t target_lat_from_home, int32_t target_lon_from_home, float dt);
/// get_loiter_vel_lat_lon - loiter velocity controller
/// converts desired velocities in lat/lon frame to accelerations in lat/lon frame
void get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt);
/// get_loiter_accel_lat_lon - loiter acceration controller
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
void get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon);
/// waypoint controller
/// get_wpinav_pos - wpinav position controller with desired position held in wpinav_destination
void get_wpinav_pos(float dt);
// pointers to inertial nav library
AP_InertialNav* _inav;
// pointers to pid controllers
APM_PI* _pid_pos_lat;
APM_PI* _pid_pos_lon;
AC_PID* _pid_rate_lat;
AC_PID* _pid_rate_lon;
// parameters
AP_Float _speed_cms; // default horizontal speed in cm/s
uint8_t _state; // records whether we are loitering or navigating towards a waypoint
uint32_t _last_update; // time of last update call
float _cos_yaw; // short-cut to save on calcs required to convert roll-pitch frame to lat-lon frame
float _sin_yaw;
float _cos_roll;
// output from controller
int32_t _desired_roll;
int32_t _desired_pitch;
int32_t _desired_altitude;
Vector3f _target; // loiter's target location in cm from home
Vector3f _origin; // starting point of trip to next waypoint in cm from home (equivalent to next_WP)
Vector3f _destination; // target destination in cm from home (equivalent to next_WP)
Vector3f _wpinav_target; // the intermediate target location in cm from home
Vector3f _pos_delta; // position difference between origin and destination
float _track_length; // distance in cm between origin and destination
float _track_desired; // our desired distance along the track in cm
};
#endif // AC_WPNAV_H

View File

@ -0,0 +1,69 @@
/*
* Example of AC_WPNav library .
* DIYDrones.com
*/
#include <AP_Common.h>
#include <AP_Progmem.h>
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <AP_Param.h>
#include <AP_HAL.h>
#include <AP_HAL_AVR.h>
#include <AP_GPS.h> // ArduPilot GPS library
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
#include <AP_Baro.h> // ArduPilot Mega Barometer Library
#include <Filter.h>
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
#include <AP_Declination.h>
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
#include <AP_AHRS.h>
#include <AP_Airspeed.h>
#include <AC_PID.h> // PID library
#include <APM_PI.h> // PID library
#include <AP_Buffer.h> // ArduPilot general purpose FIFO buffer
#include <AP_InertialNav.h> // Inertial Navigation library
#include <AC_WPNav.h> // Waypoint Navigation library
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
// INS and Baro declaration
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
#define A_LED_PIN 27
#define C_LED_PIN 25
AP_InertialSensor_MPU6000 ins;
AP_Baro_MS5611 baro(&AP_Baro_MS5611::spi);
#else
#define A_LED_PIN 37
#define C_LED_PIN 35
AP_ADC_ADS7844 adc;
AP_InertialSensor_Oilpan ins(&adc);
AP_Baro_BMP085 baro;
#endif
// GPS declaration
GPS *gps;
AP_GPS_Auto auto_gps(&gps);
AP_Compass_HMC5843 compass;
AP_AHRS_DCM ahrs(&ins, gps);
// Inertial Nav declaration
AP_InertialNav inertialnav(&ahrs, &ins, &baro, &gps);
void setup()
{
hal.console->println("WPNav library test");
}
void loop()
{
// call update function
hal.console->printf_P(PSTR("hello"));
hal.scheduler->delay(1);
}
AP_HAL_MAIN();

View File

@ -0,0 +1 @@
include ../../../../mk/apm.mk

View File

@ -0,0 +1,19 @@
Compass KEYWORD1
AP_Compass KEYWORD1
APM_Compass KEYWORD1
init KEYWORD2
read KEYWORD2
calculate KEYWORD2
set_orientation KEYWORD2
set_offsets KEYWORD2
set_declination KEYWORD2
heading KEYWORD2
heading_x KEYWORD2
heading_y KEYWORD2
mag_x KEYWORD2
mag_y KEYWORD2
mag_z KEYWORD2
last_update KEYWORD2