ardupilot/libraries/AP_Motors/AP_MotorsHeli_Single.cpp

565 lines
22 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include <RC_Channel/RC_Channel.h>
#include "AP_MotorsHeli_Single.h"
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Single::var_info[] = {
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
// @Param: SV1_POS
// @DisplayName: Servo 1 Position
// @Description: Angular location of swash servo #1
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli_Single, _servo1_pos, AP_MOTORS_HELI_SINGLE_SERVO1_POS),
// @Param: SV2_POS
// @DisplayName: Servo 2 Position
// @Description: Angular location of swash servo #2
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli_Single, _servo2_pos, AP_MOTORS_HELI_SINGLE_SERVO2_POS),
// @Param: SV3_POS
// @DisplayName: Servo 3 Position
// @Description: Angular location of swash servo #3
// @Range: -180 180
// @Units: Degrees
// @User: Standard
// @Increment: 1
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli_Single, _servo3_pos, AP_MOTORS_HELI_SINGLE_SERVO3_POS),
// @Param: TAIL_TYPE
// @DisplayName: Tail Type
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected
// @Values: 0:Servo only,1:Servo with ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch
// @User: Standard
AP_GROUPINFO("TAIL_TYPE", 4, AP_MotorsHeli_Single, _tail_type, AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO),
// @Param: SWASH_TYPE
// @DisplayName: Swash Type
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing
// @User: Standard
AP_GROUPINFO("SWASH_TYPE", 5, AP_MotorsHeli_Single, _swash_type, AP_MOTORS_HELI_SINGLE_SWASH_CCPM),
// @Param: GYR_GAIN
// @DisplayName: External Gyro Gain
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
2015-08-09 08:02:54 -03:00
AP_GROUPINFO("GYR_GAIN", 6, AP_MotorsHeli_Single, _ext_gyro_gain_std, AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN),
// @Param: PHANG
// @DisplayName: Swashplate Phase Angle Compensation
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
// @Range: -90 90
// @Units: Degrees
// @User: Advanced
// @Increment: 1
AP_GROUPINFO("PHANG", 7, AP_MotorsHeli_Single, _phase_angle, 0),
// @Param: COLYAW
// @DisplayName: Collective-Yaw Mixing
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
// @Range: -10 10
// @Increment: 0.1
AP_GROUPINFO("COLYAW", 8, AP_MotorsHeli_Single, _collective_yaw_effect, 0),
// @Param: FLYBAR_MODE
// @DisplayName: Flybar Mode Selector
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode
2015-12-27 01:08:32 -04:00
// @Values: 0:NoFlybar 1:Flybar
// @User: Standard
AP_GROUPINFO("FLYBAR_MODE", 9, AP_MotorsHeli_Single, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR),
// @Param: TAIL_SPEED
// @DisplayName: Direct Drive VarPitch Tail ESC speed
// @Description: Direct Drive VarPitch Tail ESC speed. Only used when TailType is DirectDrive VarPitch
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("TAIL_SPEED", 10, AP_MotorsHeli_Single, _direct_drive_tailspeed, AP_MOTORS_HELI_SINGLE_DDVPT_SPEED_DEFAULT),
2015-08-09 08:02:54 -03:00
// @Param: GYR_GAIN_ACRO
// @DisplayName: External Gyro Gain for ACRO
// @Description: PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro. A value of zero means to use H_GYR_GAIN
// @Range: 0 1000
// @Units: PWM
// @Increment: 1
// @User: Standard
AP_GROUPINFO("GYR_GAIN_ACRO", 11, AP_MotorsHeli_Single, _ext_gyro_gain_acro, 0),
AP_GROUPEND
};
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Single::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask =
1U << AP_MOTORS_MOT_1 |
1U << AP_MOTORS_MOT_2 |
1U << AP_MOTORS_MOT_3 |
1U << AP_MOTORS_MOT_4;
rc_set_freq(mask, _speed_hz);
}
// enable - starts allowing signals to be sent to motors and servos
void AP_MotorsHeli_Single::enable()
{
// enable output channels
rc_enable_ch(AP_MOTORS_MOT_1); // swash servo 1
rc_enable_ch(AP_MOTORS_MOT_2); // swash servo 2
rc_enable_ch(AP_MOTORS_MOT_3); // swash servo 3
rc_enable_ch(AP_MOTORS_MOT_4); // yaw
rc_enable_ch(AP_MOTORS_HELI_SINGLE_AUX); // output for gyro gain or direct drive variable pitch tail motor
rc_enable_ch(AP_MOTORS_HELI_SINGLE_RSC); // output for main rotor esc
}
// init_outputs - initialise Servo/PWM ranges and endpoints
void AP_MotorsHeli_Single::init_outputs()
{
// reset swash servo range and endpoints
reset_swash_servo (_swash_servo_1);
reset_swash_servo (_swash_servo_2);
reset_swash_servo (_swash_servo_3);
_yaw_servo.set_angle(4500);
// set main rotor servo range
// tail rotor servo use range as set in vehicle code for rc7
_main_rotor.init_servo();
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Single::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!armed()) {
return;
}
// output to motors and servos
switch (motor_seq) {
case 1:
// swash servo 1
rc_write(AP_MOTORS_MOT_1, pwm);
break;
case 2:
// swash servo 2
rc_write(AP_MOTORS_MOT_2, pwm);
break;
case 3:
// swash servo 3
rc_write(AP_MOTORS_MOT_3, pwm);
break;
case 4:
// external gyro & tail servo
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
2015-08-09 08:02:54 -03:00
if (_acro_tail && _ext_gyro_gain_acro > 0) {
write_aux(_ext_gyro_gain_acro);
} else {
write_aux(_ext_gyro_gain_std);
}
}
rc_write(AP_MOTORS_MOT_4, pwm);
break;
case 5:
// main rotor
rc_write(AP_MOTORS_HELI_SINGLE_RSC, pwm);
break;
default:
// do nothing
break;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Single::set_desired_rotor_speed(int16_t desired_speed)
{
_main_rotor.set_desired_speed(desired_speed);
// always send desired speed to tail rotor control, will do nothing if not DDVPT not enabled
_tail_rotor.set_desired_speed(_direct_drive_tailspeed);
}
// calculate_scalars - recalculates various scalers used.
void AP_MotorsHeli_Single::calculate_armed_scalars()
{
_main_rotor.set_ramp_time(_rsc_ramp_time);
_main_rotor.set_runup_time(_rsc_runup_time);
_main_rotor.set_critical_speed(_rsc_critical);
_main_rotor.set_idle_output(_rsc_idle_output);
_main_rotor.set_power_output_range(_rsc_power_low, _rsc_power_high);
_main_rotor.recalc_scalers();
}
// calculate_scalars - recalculates various scalers used.
void AP_MotorsHeli_Single::calculate_scalars()
{
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min = AP_MOTORS_HELI_COLLECTIVE_MIN;
_collective_max = AP_MOTORS_HELI_COLLECTIVE_MAX;
}
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max);
// calculate collective mid point as a number from 0 to 1000
_collective_mid_pwm = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min))*1000.0f;
// calculate maximum collective pitch range from full positive pitch to zero pitch
_collective_range = 1000 - _collective_mid_pwm;
// determine roll, pitch and collective input scaling
_roll_scaler = (float)_cyclic_max/4500.0f;
_pitch_scaler = (float)_cyclic_max/4500.0f;
_collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f;
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// send setpoints to main rotor controller and trigger recalculation of scalars
_main_rotor.set_control_mode(static_cast<RotorControlMode>(_rsc_mode.get()));
calculate_armed_scalars();
// send setpoints to tail rotor controller and trigger recalculation of scalars
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_VARPITCH) {
_tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_SPEED_SETPOINT);
_tail_rotor.set_ramp_time(AP_MOTORS_HELI_SINGLE_DDVPT_RAMP_TIME);
_tail_rotor.set_runup_time(AP_MOTORS_HELI_SINGLE_DDVPT_RUNUP_TIME);
_tail_rotor.set_critical_speed(_rsc_critical);
_tail_rotor.set_idle_output(_rsc_idle_output);
} else {
_tail_rotor.set_control_mode(ROTOR_CONTROL_MODE_DISABLED);
_tail_rotor.set_ramp_time(0);
_tail_rotor.set_runup_time(0);
_tail_rotor.set_critical_speed(0);
_tail_rotor.set_idle_output(0);
}
_tail_rotor.recalc_scalers();
}
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli_Single::calculate_roll_pitch_collective_factors()
{
if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_CCPM) { //CCPM Swashplate, perform control mixing
// roll factors
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - (_phase_angle + _delta_phase_angle)));
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - (_phase_angle + _delta_phase_angle)));
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - (_phase_angle + _delta_phase_angle)));
// pitch factors
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - (_phase_angle + _delta_phase_angle)));
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - (_phase_angle + _delta_phase_angle)));
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - (_phase_angle + _delta_phase_angle)));
// collective factors
_collectiveFactor[CH_1] = 1;
_collectiveFactor[CH_2] = 1;
_collectiveFactor[CH_3] = 1;
}else{ //H1 Swashplate, keep servo outputs seperated
// roll factors
_rollFactor[CH_1] = 1;
_rollFactor[CH_2] = 0;
_rollFactor[CH_3] = 0;
// pitch factors
_pitchFactor[CH_1] = 0;
_pitchFactor[CH_2] = 1;
_pitchFactor[CH_3] = 0;
// collective factors
_collectiveFactor[CH_1] = 0;
_collectiveFactor[CH_2] = 0;
_collectiveFactor[CH_3] = 1;
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsHeli_Single::get_motor_mask()
{
// heli uses channels 1,2,3,4,7 and 8
return rc_map_mask(1U << 0 | 1U << 1 | 1U << 2 | 1U << 3 | 1U << AP_MOTORS_HELI_SINGLE_AUX | 1U << AP_MOTORS_HELI_SINGLE_RSC);
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Single::update_motor_control(RotorControlState state)
{
// Send state update to motors
_tail_rotor.output(state);
_main_rotor.output(state);
if (state == ROTOR_CONTROL_STOP){
// set engine run enable aux output to not run position to kill engine when disarmed
RC_Channel_aux::set_radio_to_min(RC_Channel_aux::k_engine_run_enable);
} else {
// else if armed, set engine run enable output to run position
RC_Channel_aux::set_radio_to_max(RC_Channel_aux::k_engine_run_enable);
}
// Check if both rotors are run-up, tail rotor controller always returns true if not enabled
_heliflags.rotor_runup_complete = ( _main_rotor.is_runup_complete() && _tail_rotor.is_runup_complete() );
}
// set_delta_phase_angle for setting variable phase angle compensation and force
// recalculation of collective factors
void AP_MotorsHeli_Single::set_delta_phase_angle(int16_t angle)
{
angle = constrain_int16(angle, -90, 90);
_delta_phase_angle = angle;
calculate_roll_pitch_collective_factors();
}
//
// move_actuators - moves swash plate and tail rotor
// - expected ranges:
// roll : -4500 ~ 4500
// pitch: -4500 ~ 4500
// collective: 0 ~ 1000
// yaw: -4500 ~ 4500
//
void AP_MotorsHeli_Single::move_actuators(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out)
{
int16_t yaw_offset = 0;
int16_t coll_out_scaled;
// initialize limits flag
limit.roll_pitch = false;
limit.yaw = false;
limit.throttle_lower = false;
limit.throttle_upper = false;
// rescale roll_out and pitch_out into the min and max ranges to provide linear motion
// across the input range instead of stopping when the input hits the constrain value
// these calculations are based on an assumption of the user specified cyclic_max
// coming into this equation at 4500 or less, and based on the original assumption of the
// total _servo_x.servo_out range being -4500 to 4500.
float total_out = pythagorous2((float)pitch_out, (float)roll_out);
if (total_out > _cyclic_max) {
float ratio = (float)_cyclic_max / total_out;
roll_out *= ratio;
pitch_out *= ratio;
limit.roll_pitch = true;
}
// constrain collective input
_collective_out = coll_in;
if (_collective_out <= 0) {
_collective_out = 0;
limit.throttle_lower = true;
}
if (_collective_out >= 1000) {
_collective_out = 1000;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && _collective_out < _land_collective_min) {
_collective_out = _land_collective_min;
limit.throttle_lower = true;
}
// scale collective pitch
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000;
// if servo output not in manual mode, process pre-compensation factors
if (_servo_mode == SERVO_CONTROL_MODE_AUTOMATED) {
// rudder feed forward based on collective
// the feed-forward is not required when the motor is stopped or at idle, and thus not creating torque
// also not required if we are using external gyro
if ((_main_rotor.get_control_output() > _rsc_idle_output) && _tail_type != AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
// sanity check collective_yaw_effect
_collective_yaw_effect = constrain_float(_collective_yaw_effect, -AP_MOTORS_HELI_SINGLE_COLYAW_RANGE, AP_MOTORS_HELI_SINGLE_COLYAW_RANGE);
yaw_offset = _collective_yaw_effect * abs(_collective_out - _collective_mid_pwm);
}
} else {
yaw_offset = 0;
}
// feed power estimate into main rotor controller
// ToDo: include tail rotor power?
// ToDo: add main rotor cyclic power?
2015-08-12 21:41:56 -03:00
_main_rotor_power = ((float)(abs(_collective_out - _collective_mid_pwm)) / _collective_range);
_main_rotor.set_motor_load(_main_rotor_power);
// swashplate servos
_swash_servo_1.servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_swash_servo_1.radio_trim-1500);
_swash_servo_2.servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_swash_servo_2.radio_trim-1500);
if (_swash_type == AP_MOTORS_HELI_SINGLE_SWASH_H1) {
_swash_servo_1.servo_out += 500;
_swash_servo_2.servo_out += 500;
}
_swash_servo_3.servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_swash_servo_3.radio_trim-1500);
// use servo_out to calculate pwm_out and radio_out
_swash_servo_1.calc_pwm();
_swash_servo_2.calc_pwm();
_swash_servo_3.calc_pwm();
hal.rcout->cork();
// actually move the servos
rc_write(AP_MOTORS_MOT_1, _swash_servo_1.radio_out);
rc_write(AP_MOTORS_MOT_2, _swash_servo_2.radio_out);
rc_write(AP_MOTORS_MOT_3, _swash_servo_3.radio_out);
// update the yaw rate using the tail rotor/servo
move_yaw(yaw_out + yaw_offset);
hal.rcout->push();
}
// move_yaw
void AP_MotorsHeli_Single::move_yaw(int16_t yaw_out)
{
_yaw_servo.servo_out = constrain_int16(yaw_out, -4500, 4500);
if (_yaw_servo.servo_out != yaw_out) {
limit.yaw = true;
}
_yaw_servo.calc_pwm();
rc_write(AP_MOTORS_MOT_4, _yaw_servo.radio_out);
if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_SERVO_EXTGYRO) {
// output gain to exernal gyro
2015-08-09 08:02:54 -03:00
if (_acro_tail && _ext_gyro_gain_acro > 0) {
write_aux(_ext_gyro_gain_acro);
} else {
write_aux(_ext_gyro_gain_std);
}
} else if (_tail_type == AP_MOTORS_HELI_SINGLE_TAILTYPE_DIRECTDRIVE_FIXEDPITCH && _main_rotor.get_desired_speed() > 0) {
// output yaw servo to tail rsc
write_aux(_yaw_servo.servo_out);
}
}
// write_aux - outputs pwm onto output aux channel (ch7)
// servo_out parameter is of the range 0 ~ 1000
void AP_MotorsHeli_Single::write_aux(int16_t servo_out)
{
_servo_aux.servo_out = servo_out;
_servo_aux.calc_pwm();
rc_write(AP_MOTORS_HELI_SINGLE_AUX, _servo_aux.radio_out);
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Single::servo_test()
{
_servo_test_cycle_time += 1.0f / _loop_rate;
if ((_servo_test_cycle_time >= 0.0f && _servo_test_cycle_time < 0.5f)|| // Tilt swash back
(_servo_test_cycle_time >= 6.0f && _servo_test_cycle_time < 6.5f)){
_pitch_test += (4500 / (_loop_rate/2));
_oscillate_angle += 8 * M_PI / _loop_rate;
_yaw_test = 2250 * sinf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 0.5f && _servo_test_cycle_time < 4.5f)|| // Roll swash around
(_servo_test_cycle_time >= 6.5f && _servo_test_cycle_time < 10.5f)){
_oscillate_angle += M_PI / (2 * _loop_rate);
_roll_test = 4500 * sinf(_oscillate_angle);
_pitch_test = 4500 * cosf(_oscillate_angle);
_yaw_test = 4500 * sinf(_oscillate_angle);
} else if ((_servo_test_cycle_time >= 4.5f && _servo_test_cycle_time < 5.0f)|| // Return swash to level
(_servo_test_cycle_time >= 10.5f && _servo_test_cycle_time < 11.0f)){
_pitch_test -= (4500 / (_loop_rate/2));
_oscillate_angle += 8 * M_PI / _loop_rate;
_yaw_test = 2250 * sinf(_oscillate_angle);
} else if (_servo_test_cycle_time >= 5.0f && _servo_test_cycle_time < 6.0f){ // Raise swash to top
_collective_test += (1000 / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
_yaw_test = 4500 * sinf(_oscillate_angle);
} else if (_servo_test_cycle_time >= 11.0f && _servo_test_cycle_time < 12.0f){ // Lower swash to bottom
_collective_test -= (1000 / _loop_rate);
_oscillate_angle += 2 * M_PI / _loop_rate;
_yaw_test = 4500 * sinf(_oscillate_angle);
} else { // reset cycle
_servo_test_cycle_time = 0.0f;
_oscillate_angle = 0.0f;
_collective_test = 0.0f;
_roll_test = 0.0f;
_pitch_test = 0.0f;
_yaw_test = 0.0f;
// decrement servo test cycle counter at the end of the cycle
if (_servo_test_cycle_counter > 0){
_servo_test_cycle_counter--;
}
}
// over-ride servo commands to move servos through defined ranges
_throttle_control_input = _collective_test;
_roll_control_input = _roll_test;
_pitch_control_input = _pitch_test;
_yaw_control_input = _yaw_test;
}
// parameter_check - check if helicopter specific parameters are sensible
bool AP_MotorsHeli_Single::parameter_check(bool display_msg) const
{
// returns false if Phase Angle is outside of range
if ((_phase_angle > 90) || (_phase_angle < -90)){
if (display_msg) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_PHANG out of range");
}
return false;
}
// returns false if Acro External Gyro Gain is outside of range
if ((_ext_gyro_gain_acro < 0) || (_ext_gyro_gain_acro > 1000)){
if (display_msg) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN_ACRO out of range");
}
return false;
}
// returns false if Standard External Gyro Gain is outside of range
if ((_ext_gyro_gain_std < 0) || (_ext_gyro_gain_std > 1000)){
if (display_msg) {
GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_CRITICAL, "PreArm: H_GYR_GAIN out of range");
}
return false;
}
// check parent class parameters
return AP_MotorsHeli::parameter_check(display_msg);
}