ardupilot/libraries/AP_HAL_AVR_SITL/sitl_gps.cpp

251 lines
5.8 KiB
C++
Raw Normal View History

/*
SITL handling
This simulates a GPS on a serial port
Andrew Tridgell November 2011
*/
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
#include <AP_HAL_AVR.h>
#include <AP_HAL_AVR_SITL.h>
#include "AP_HAL_AVR_SITL_Namespace.h"
#include "HAL_AVR_SITL_Class.h"
#include <AP_Math.h>
#include "../SITL/SITL.h"
#include "Scheduler.h"
#include "UARTDriver.h"
#include "../AP_GPS/AP_GPS.h"
#include "../AP_GPS/AP_GPS_UBLOX.h"
#include <sys/ioctl.h>
#include <unistd.h>
using namespace AVR_SITL;
extern const AP_HAL::HAL& hal;
#define MAX_GPS_DELAY 100
struct gps_data {
double latitude;
double longitude;
float altitude;
double speedN;
double speedE;
bool have_lock;
} gps_data[MAX_GPS_DELAY];
static uint8_t next_gps_index;
static uint8_t gps_delay;
// state of GPS emulation
static struct {
/* pipe emulating UBLOX GPS serial stream */
int gps_fd, client_fd;
uint32_t last_update; // milliseconds
} gps_state;
/*
hook for reading from the GPS pipe
*/
2012-12-17 22:34:13 -04:00
ssize_t SITL_State::gps_read(int fd, void *buf, size_t count)
{
#ifdef FIONREAD
// use FIONREAD to get exact value if possible
int num_ready;
while (ioctl(fd, FIONREAD, &num_ready) == 0 && num_ready > 256) {
// the pipe is filling up - drain it
uint8_t tmp[128];
if (read(fd, tmp, sizeof(tmp)) != sizeof(tmp)) {
break;
}
}
#endif
return read(fd, buf, count);
}
/*
setup GPS input pipe
*/
2012-12-17 22:34:13 -04:00
int SITL_State::gps_pipe(void)
{
int fd[2];
if (gps_state.client_fd != 0) {
return gps_state.client_fd;
}
pipe(fd);
gps_state.gps_fd = fd[1];
gps_state.client_fd = fd[0];
gps_state.last_update = _scheduler->millis();
AVR_SITL::SITLUARTDriver::_set_nonblocking(gps_state.gps_fd);
AVR_SITL::SITLUARTDriver::_set_nonblocking(fd[0]);
return gps_state.client_fd;
}
/*
send a UBLOX GPS message
*/
void SITL_State::_gps_send(uint8_t msgid, uint8_t *buf, uint16_t size)
{
const uint8_t PREAMBLE1 = 0xb5;
const uint8_t PREAMBLE2 = 0x62;
const uint8_t CLASS_NAV = 0x1;
uint8_t hdr[6], chk[2];
hdr[0] = PREAMBLE1;
hdr[1] = PREAMBLE2;
hdr[2] = CLASS_NAV;
hdr[3] = msgid;
hdr[4] = size & 0xFF;
hdr[5] = size >> 8;
chk[0] = chk[1] = hdr[2];
chk[1] += (chk[0] += hdr[3]);
chk[1] += (chk[0] += hdr[4]);
chk[1] += (chk[0] += hdr[5]);
for (uint8_t i=0; i<size; i++) {
chk[1] += (chk[0] += buf[i]);
}
write(gps_state.gps_fd, hdr, sizeof(hdr));
write(gps_state.gps_fd, buf, size);
write(gps_state.gps_fd, chk, sizeof(chk));
}
/*
possibly send a new GPS UBLOX packet
*/
void SITL_State::_update_gps(double latitude, double longitude, float altitude,
double speedN, double speedE, bool have_lock)
{
struct ubx_nav_posllh {
uint32_t time; // GPS msToW
int32_t longitude;
int32_t latitude;
int32_t altitude_ellipsoid;
int32_t altitude_msl;
uint32_t horizontal_accuracy;
uint32_t vertical_accuracy;
} pos;
struct ubx_nav_status {
uint32_t time; // GPS msToW
uint8_t fix_type;
uint8_t fix_status;
uint8_t differential_status;
uint8_t res;
uint32_t time_to_first_fix;
uint32_t uptime; // milliseconds
} status;
struct ubx_nav_velned {
uint32_t time; // GPS msToW
int32_t ned_north;
int32_t ned_east;
int32_t ned_down;
uint32_t speed_3d;
uint32_t speed_2d;
int32_t heading_2d;
uint32_t speed_accuracy;
uint32_t heading_accuracy;
} velned;
struct ubx_nav_solution {
uint32_t time;
int32_t time_nsec;
int16_t week;
uint8_t fix_type;
uint8_t fix_status;
int32_t ecef_x;
int32_t ecef_y;
int32_t ecef_z;
uint32_t position_accuracy_3d;
int32_t ecef_x_velocity;
int32_t ecef_y_velocity;
int32_t ecef_z_velocity;
uint32_t speed_accuracy;
uint16_t position_DOP;
uint8_t res;
uint8_t satellites;
uint32_t res2;
} sol;
const uint8_t MSG_POSLLH = 0x2;
const uint8_t MSG_STATUS = 0x3;
const uint8_t MSG_VELNED = 0x12;
const uint8_t MSG_SOL = 0x6;
struct gps_data d;
// 5Hz, to match the real UBlox config in APM
if (hal.scheduler->millis() - gps_state.last_update < 200) {
return;
}
gps_state.last_update = hal.scheduler->millis();
d.latitude = latitude;
d.longitude = longitude;
d.altitude = altitude;
d.speedN = speedN;
d.speedE = speedE;
d.have_lock = have_lock;
// add in some GPS lag
gps_data[next_gps_index++] = d;
if (next_gps_index >= gps_delay) {
next_gps_index = 0;
}
d = gps_data[next_gps_index];
if (_sitl->gps_delay != gps_delay) {
// cope with updates to the delay control
gps_delay = _sitl->gps_delay;
for (uint8_t i=0; i<gps_delay; i++) {
gps_data[i] = d;
}
}
pos.time = hal.scheduler->millis(); // FIX
pos.longitude = d.longitude * 1.0e7;
pos.latitude = d.latitude * 1.0e7;
pos.altitude_ellipsoid = d.altitude*1000.0;
pos.altitude_msl = d.altitude*1000.0;
pos.horizontal_accuracy = 5;
pos.vertical_accuracy = 10;
status.time = pos.time;
status.fix_type = d.have_lock?3:0;
status.fix_status = d.have_lock?1:0;
status.differential_status = 0;
status.res = 0;
status.time_to_first_fix = 0;
status.uptime = hal.scheduler->millis();
velned.time = pos.time;
velned.ned_north = 100.0 * d.speedN;
velned.ned_east = 100.0 * d.speedE;
velned.ned_down = 0;
#define sqr(x) ((x)*(x))
velned.speed_2d = sqrt(sqr(d.speedN)+sqr(d.speedE)) * 100;
velned.speed_3d = velned.speed_2d;
velned.heading_2d = ToDeg(atan2(d.speedE, d.speedN)) * 100000.0;
if (velned.heading_2d < 0.0) {
velned.heading_2d += 360.0 * 100000.0;
}
velned.speed_accuracy = 2;
velned.heading_accuracy = 4;
memset(&sol, 0, sizeof(sol));
sol.fix_type = d.have_lock?3:0;
sol.fix_status = 221;
sol.satellites = d.have_lock?10:3;
if (gps_state.gps_fd == 0) {
return;
}
_gps_send(MSG_POSLLH, (uint8_t*)&pos, sizeof(pos));
_gps_send(MSG_STATUS, (uint8_t*)&status, sizeof(status));
_gps_send(MSG_VELNED, (uint8_t*)&velned, sizeof(velned));
_gps_send(MSG_SOL, (uint8_t*)&sol, sizeof(sol));
}
#endif