ardupilot/ArduCopter/mode_auto.cpp

2064 lines
71 KiB
C++
Raw Normal View History

#include "Copter.h"
#if MODE_AUTO_ENABLED == ENABLED
/*
* Init and run calls for auto flight mode
2014-01-24 22:37:42 -04:00
*
* This file contains the implementation for Land, Waypoint navigation and Takeoff from Auto mode
* Command execution code (i.e. command_logic.pde) should:
2014-01-27 23:20:39 -04:00
* a) switch to Auto flight mode with set_mode() function. This will cause auto_init to be called
* b) call one of the three auto initialisation functions: auto_wp_start(), auto_takeoff_start(), auto_land_start()
2014-01-24 22:37:42 -04:00
* c) call one of the verify functions auto_wp_verify(), auto_takeoff_verify, auto_land_verify repeated to check if the command has completed
* The main loop (i.e. fast loop) will call update_flight_modes() which will in turn call auto_run() which, based upon the auto_mode variable will call
* correct auto_wp_run, auto_takeoff_run or auto_land_run to actually implement the feature
*/
/*
* While in the auto flight mode, navigation or do/now commands can be run.
2014-01-27 23:20:39 -04:00
* Code in this file implements the navigation commands
*/
// auto_init - initialise auto controller
bool Copter::ModeAuto::init(bool ignore_checks)
{
if ((copter.position_ok() && copter.mission.num_commands() > 1) || ignore_checks) {
_mode = Auto_Loiter;
2017-01-05 14:07:14 -04:00
// reject switching to auto mode if landed with motors armed but first command is not a takeoff (reduce chance of flips)
if (motors->armed() && ap.land_complete && !copter.mission.starts_with_takeoff_cmd()) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "Auto: Missing Takeoff Cmd");
return false;
}
// stop ROI from carrying over from previous runs of the mission
// To-Do: reset the yaw as part of auto_wp_start when the previous command was not a wp command to remove the need for this special ROI check
if (copter.auto_yaw_mode == AUTO_YAW_ROI) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init();
// clear guided limits
copter.mode_guided.limit_clear();
2014-05-15 04:20:02 -03:00
// start/resume the mission (based on MIS_RESTART parameter)
copter.mission.start_or_resume();
return true;
} else {
return false;
}
}
// auto_run - runs the auto controller
// should be called at 100hz or more
// relies on run_autopilot being called at 10hz which handles decision making and non-navigation related commands
void Copter::ModeAuto::run()
{
2014-01-24 22:37:42 -04:00
// call the correct auto controller
switch (_mode) {
2014-01-24 22:37:42 -04:00
case Auto_TakeOff:
takeoff_run();
2014-01-24 22:37:42 -04:00
break;
case Auto_WP:
case Auto_CircleMoveToEdge:
wp_run();
2014-01-24 22:37:42 -04:00
break;
case Auto_Land:
land_run();
2014-01-24 22:37:42 -04:00
break;
2014-01-27 10:43:48 -04:00
2014-01-27 23:20:39 -04:00
case Auto_RTL:
rtl_run();
2014-01-27 23:20:39 -04:00
break;
2014-01-27 10:43:48 -04:00
case Auto_Circle:
circle_run();
2014-01-27 10:43:48 -04:00
break;
2014-03-22 00:48:54 -03:00
case Auto_Spline:
spline_run();
2014-03-22 00:48:54 -03:00
break;
case Auto_NavGuided:
#if NAV_GUIDED == ENABLED
nav_guided_run();
#endif
break;
case Auto_Loiter:
loiter_run();
break;
2016-11-17 01:19:22 -04:00
case Auto_NavPayloadPlace:
payload_place_run();
2016-11-17 01:19:22 -04:00
break;
2014-01-24 22:37:42 -04:00
}
}
// auto_loiter_start - initialises loitering in auto mode
// returns success/failure because this can be called by exit_mission
bool Copter::ModeAuto::loiter_start()
{
// return failure if GPS is bad
if (!copter.position_ok()) {
return false;
}
_mode = Auto_Loiter;
// calculate stopping point
Vector3f stopping_point;
wp_nav->get_wp_stopping_point(stopping_point);
// initialise waypoint controller target to stopping point
wp_nav->set_wp_destination(stopping_point);
// hold yaw at current heading
set_auto_yaw_mode(AUTO_YAW_HOLD);
return true;
}
// auto_rtl_start - initialises RTL in AUTO flight mode
void Copter::ModeAuto::rtl_start()
{
_mode = Auto_RTL;
// call regular rtl flight mode initialisation and ask it to ignore checks
copter.mode_rtl.init(true);
}
2014-01-24 22:37:42 -04:00
// auto_takeoff_start - initialises waypoint controller to implement take-off
void Copter::ModeAuto::takeoff_start(const Location& dest_loc)
2014-01-24 22:37:42 -04:00
{
_mode = Auto_TakeOff;
2014-01-24 22:37:42 -04:00
// convert location to class
Location_Class dest(dest_loc);
// set horizontal target
dest.lat = copter.current_loc.lat;
dest.lng = copter.current_loc.lng;
// get altitude target
int32_t alt_target;
if (!dest.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, alt_target)) {
// this failure could only happen if take-off alt was specified as an alt-above terrain and we have no terrain data
copter.Log_Write_Error(ERROR_SUBSYSTEM_TERRAIN, ERROR_CODE_MISSING_TERRAIN_DATA);
// fall back to altitude above current altitude
alt_target = copter.current_loc.alt + dest.alt;
}
// sanity check target
if (alt_target < copter.current_loc.alt) {
dest.set_alt_cm(copter.current_loc.alt, Location_Class::ALT_FRAME_ABOVE_HOME);
}
// Note: if taking off from below home this could cause a climb to an unexpectedly high altitude
if (alt_target < 100) {
dest.set_alt_cm(100, Location_Class::ALT_FRAME_ABOVE_HOME);
}
// set waypoint controller target
if (!wp_nav->set_wp_destination(dest)) {
// failure to set destination can only be because of missing terrain data
copter.failsafe_terrain_on_event();
return;
}
2014-01-24 22:37:42 -04:00
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
// clear i term when we're taking off
set_throttle_takeoff();
// get initial alt for WP_NAVALT_MIN
copter.auto_takeoff_set_start_alt();
2014-01-24 22:37:42 -04:00
}
// auto_wp_start - initialises waypoint controller to implement flying to a particular destination
void Copter::ModeAuto::wp_start(const Vector3f& destination)
2014-01-24 22:37:42 -04:00
{
_mode = Auto_WP;
2014-01-24 22:37:42 -04:00
// initialise wpnav (no need to check return status because terrain data is not used)
wp_nav->set_wp_destination(destination, false);
2014-01-24 22:37:42 -04:00
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (copter.auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(copter.get_default_auto_yaw_mode(false));
}
2014-01-24 22:37:42 -04:00
}
// auto_wp_start - initialises waypoint controller to implement flying to a particular destination
void Copter::ModeAuto::wp_start(const Location_Class& dest_loc)
{
_mode = Auto_WP;
// send target to waypoint controller
if (!wp_nav->set_wp_destination(dest_loc)) {
// failure to set destination can only be because of missing terrain data
copter.failsafe_terrain_on_event();
return;
}
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (copter.auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(copter.get_default_auto_yaw_mode(false));
}
}
2014-01-24 22:37:42 -04:00
// auto_land_start - initialises controller to implement a landing
void Copter::ModeAuto::land_start()
2014-01-24 22:37:42 -04:00
{
// set target to stopping point
Vector3f stopping_point;
loiter_nav->get_stopping_point_xy(stopping_point);
2014-01-24 22:37:42 -04:00
// call location specific land start function
land_start(stopping_point);
2014-01-24 22:37:42 -04:00
}
// auto_land_start - initialises controller to implement a landing
void Copter::ModeAuto::land_start(const Vector3f& destination)
2014-01-24 22:37:42 -04:00
{
_mode = Auto_Land;
2014-01-24 22:37:42 -04:00
// initialise loiter target destination
loiter_nav->init_target(destination);
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target(inertial_nav.get_altitude());
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
2014-01-24 22:37:42 -04:00
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// auto_circle_movetoedge_start - initialise waypoint controller to move to edge of a circle with it's center at the specified location
// we assume the caller has performed all required GPS_ok checks
void Copter::ModeAuto::circle_movetoedge_start(const Location_Class &circle_center, float radius_m)
{
// convert location to vector from ekf origin
Vector3f circle_center_neu;
if (!circle_center.get_vector_from_origin_NEU(circle_center_neu)) {
// default to current position and log error
circle_center_neu = inertial_nav.get_position();
copter.Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_CIRCLE_INIT);
}
copter.circle_nav->set_center(circle_center_neu);
// set circle radius
if (!is_zero(radius_m)) {
copter.circle_nav->set_radius(radius_m * 100.0f);
}
// check our distance from edge of circle
Vector3f circle_edge_neu;
copter.circle_nav->get_closest_point_on_circle(circle_edge_neu);
float dist_to_edge = (inertial_nav.get_position() - circle_edge_neu).length();
// if more than 3m then fly to edge
if (dist_to_edge > 300.0f) {
// set the state to move to the edge of the circle
_mode = Auto_CircleMoveToEdge;
// convert circle_edge_neu to Location_Class
Location_Class circle_edge(circle_edge_neu);
// convert altitude to same as command
circle_edge.set_alt_cm(circle_center.alt, circle_center.get_alt_frame());
// initialise wpnav to move to edge of circle
if (!wp_nav->set_wp_destination(circle_edge)) {
// failure to set destination can only be because of missing terrain data
copter.failsafe_terrain_on_event();
}
// if we are outside the circle, point at the edge, otherwise hold yaw
const Vector3f &curr_pos = inertial_nav.get_position();
float dist_to_center = norm(circle_center_neu.x - curr_pos.x, circle_center_neu.y - curr_pos.y);
if (dist_to_center > copter.circle_nav->get_radius() && dist_to_center > 500) {
set_auto_yaw_mode(copter.get_default_auto_yaw_mode(false));
} else {
// vehicle is within circle so hold yaw to avoid spinning as we move to edge of circle
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
} else {
circle_start();
}
}
2014-01-27 10:43:48 -04:00
// auto_circle_start - initialises controller to fly a circle in AUTO flight mode
// assumes that circle_nav object has already been initialised with circle center and radius
void Copter::ModeAuto::circle_start()
2014-01-27 10:43:48 -04:00
{
_mode = Auto_Circle;
2014-01-27 23:20:39 -04:00
// initialise circle controller
copter.circle_nav->init(copter.circle_nav->get_center());
2014-01-27 10:43:48 -04:00
}
// auto_spline_start - initialises waypoint controller to implement flying to a particular destination using the spline controller
// seg_end_type can be SEGMENT_END_STOP, SEGMENT_END_STRAIGHT or SEGMENT_END_SPLINE. If Straight or Spline the next_destination should be provided
void Copter::ModeAuto::spline_start(const Location_Class& destination, bool stopped_at_start,
AC_WPNav::spline_segment_end_type seg_end_type,
const Location_Class& next_destination)
{
_mode = Auto_Spline;
// initialise wpnav
if (!wp_nav->set_spline_destination(destination, stopped_at_start, seg_end_type, next_destination)) {
// failure to set destination can only be because of missing terrain data
copter.failsafe_terrain_on_event();
return;
}
// initialise yaw
// To-Do: reset the yaw only when the previous navigation command is not a WP. this would allow removing the special check for ROI
if (copter.auto_yaw_mode != AUTO_YAW_ROI) {
set_auto_yaw_mode(copter.get_default_auto_yaw_mode(false));
}
}
#if NAV_GUIDED == ENABLED
// auto_nav_guided_start - hand over control to external navigation controller in AUTO mode
void Copter::ModeAuto::nav_guided_start()
{
_mode = Auto_NavGuided;
// call regular guided flight mode initialisation
copter.mode_guided.init(true);
// initialise guided start time and position as reference for limit checking
copter.mode_guided.limit_init_time_and_pos();
}
#endif //NAV_GUIDED
bool Copter::ModeAuto::landing_gear_should_be_deployed() const
{
switch(_mode) {
case Auto_Land:
return true;
case Auto_RTL:
return copter.mode_rtl.landing_gear_should_be_deployed();
default:
return false;
}
return false;
}
// auto_payload_place_start - initialises controller to implement a placing
void Copter::ModeAuto::payload_place_start()
{
// set target to stopping point
Vector3f stopping_point;
loiter_nav->get_stopping_point_xy(stopping_point);
// call location specific place start function
payload_place_start(stopping_point);
}
// start_command - this function will be called when the ap_mission lib wishes to start a new command
bool Copter::ModeAuto::start_command(const AP_Mission::Mission_Command& cmd)
{
// To-Do: logging when new commands start/end
if (copter.should_log(MASK_LOG_CMD)) {
copter.DataFlash.Log_Write_Mission_Cmd(copter.mission, cmd);
}
switch(cmd.id) {
///
/// navigation commands
///
case MAV_CMD_NAV_TAKEOFF: // 22
do_takeoff(cmd);
break;
case MAV_CMD_NAV_WAYPOINT: // 16 Navigate to Waypoint
do_nav_wp(cmd);
break;
case MAV_CMD_NAV_LAND: // 21 LAND to Waypoint
do_land(cmd);
break;
case MAV_CMD_NAV_PAYLOAD_PLACE: // 94 place at Waypoint
do_payload_place(cmd);
break;
case MAV_CMD_NAV_LOITER_UNLIM: // 17 Loiter indefinitely
do_loiter_unlimited(cmd);
break;
case MAV_CMD_NAV_LOITER_TURNS: //18 Loiter N Times
do_circle(cmd);
break;
case MAV_CMD_NAV_LOITER_TIME: // 19
do_loiter_time(cmd);
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH: //20
do_RTL();
break;
case MAV_CMD_NAV_SPLINE_WAYPOINT: // 82 Navigate to Waypoint using spline
do_spline_wp(cmd);
break;
#if NAV_GUIDED == ENABLED
case MAV_CMD_NAV_GUIDED_ENABLE: // 92 accept navigation commands from external nav computer
do_nav_guided_enable(cmd);
break;
#endif
case MAV_CMD_NAV_DELAY: // 94 Delay the next navigation command
do_nav_delay(cmd);
break;
//
// conditional commands
//
case MAV_CMD_CONDITION_DELAY: // 112
do_wait_delay(cmd);
break;
case MAV_CMD_CONDITION_DISTANCE: // 114
do_within_distance(cmd);
break;
case MAV_CMD_CONDITION_YAW: // 115
do_yaw(cmd);
break;
///
/// do commands
///
case MAV_CMD_DO_CHANGE_SPEED: // 178
do_change_speed(cmd);
break;
case MAV_CMD_DO_SET_HOME: // 179
do_set_home(cmd);
break;
case MAV_CMD_DO_SET_SERVO:
copter.ServoRelayEvents.do_set_servo(cmd.content.servo.channel, cmd.content.servo.pwm);
break;
case MAV_CMD_DO_SET_RELAY:
copter.ServoRelayEvents.do_set_relay(cmd.content.relay.num, cmd.content.relay.state);
break;
case MAV_CMD_DO_REPEAT_SERVO:
copter.ServoRelayEvents.do_repeat_servo(cmd.content.repeat_servo.channel, cmd.content.repeat_servo.pwm,
cmd.content.repeat_servo.repeat_count, cmd.content.repeat_servo.cycle_time * 1000.0f);
break;
case MAV_CMD_DO_REPEAT_RELAY:
copter.ServoRelayEvents.do_repeat_relay(cmd.content.repeat_relay.num, cmd.content.repeat_relay.repeat_count,
cmd.content.repeat_relay.cycle_time * 1000.0f);
break;
case MAV_CMD_DO_SET_ROI: // 201
// point the copter and camera at a region of interest (ROI)
do_roi(cmd);
break;
case MAV_CMD_DO_MOUNT_CONTROL: // 205
// point the camera to a specified angle
do_mount_control(cmd);
break;
case MAV_CMD_DO_FENCE_ENABLE:
#if AC_FENCE == ENABLED
if (cmd.p1 == 0) { //disable
copter.fence.enable(false);
gcs().send_text(MAV_SEVERITY_INFO, "Fence Disabled");
} else { //enable fence
copter.fence.enable(true);
gcs().send_text(MAV_SEVERITY_INFO, "Fence Enabled");
}
#endif //AC_FENCE == ENABLED
break;
#if CAMERA == ENABLED
case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty|
break;
case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)|
do_digicam_configure(cmd);
break;
case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty|
do_digicam_control(cmd);
break;
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
copter.camera.set_trigger_distance(cmd.content.cam_trigg_dist.meters);
break;
#endif
#if PARACHUTE == ENABLED
case MAV_CMD_DO_PARACHUTE: // Mission command to configure or release parachute
do_parachute(cmd);
break;
#endif
#if GRIPPER_ENABLED == ENABLED
case MAV_CMD_DO_GRIPPER: // Mission command to control gripper
do_gripper(cmd);
break;
#endif
#if NAV_GUIDED == ENABLED
case MAV_CMD_DO_GUIDED_LIMITS: // 220 accept guided mode limits
do_guided_limits(cmd);
break;
#endif
#if WINCH_ENABLED == ENABLED
case MAV_CMD_DO_WINCH: // Mission command to control winch
do_winch(cmd);
break;
#endif
default:
// do nothing with unrecognized MAVLink messages
break;
}
// always return success
return true;
}
// verify_command_callback - callback function called from ap-mission at 10hz or higher when a command is being run
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
bool Copter::ModeAuto::verify_command_callback(const AP_Mission::Mission_Command& cmd)
{
if (copter.flightmode == &copter.mode_auto) {
bool cmd_complete = verify_command(cmd);
// send message to GCS
if (cmd_complete) {
gcs().send_mission_item_reached_message(cmd.index);
}
return cmd_complete;
}
return false;
}
// exit_mission - function that is called once the mission completes
void Copter::ModeAuto::exit_mission()
{
// play a tone
AP_Notify::events.mission_complete = 1;
// if we are not on the ground switch to loiter or land
if(!ap.land_complete) {
// try to enter loiter but if that fails land
if(!loiter_start()) {
set_mode(LAND, MODE_REASON_MISSION_END);
}
}else{
// if we've landed it's safe to disarm
copter.init_disarm_motors();
}
}
// do_guided - start guided mode
bool Copter::ModeAuto::do_guided(const AP_Mission::Mission_Command& cmd)
{
// only process guided waypoint if we are in guided mode
if (copter.control_mode != GUIDED && !(copter.control_mode == AUTO && mode() == Auto_NavGuided)) {
return false;
}
// switch to handle different commands
switch (cmd.id) {
case MAV_CMD_NAV_WAYPOINT:
{
// set wp_nav's destination
Location_Class dest(cmd.content.location);
return copter.mode_guided.set_destination(dest);
}
case MAV_CMD_CONDITION_YAW:
do_yaw(cmd);
return true;
default:
// reject unrecognised command
return false;
}
return true;
}
uint32_t Copter::ModeAuto::wp_distance() const
{
return wp_nav->get_wp_distance_to_destination();
}
int32_t Copter::ModeAuto::wp_bearing() const
{
return wp_nav->get_wp_bearing_to_destination();
}
// update mission
void Copter::ModeAuto::run_autopilot()
{
copter.mission.update();
}
/*******************************************************************************
Verify command Handlers
Each type of mission element has a "verify" operation. The verify
operation returns true when the mission element has completed and we
should move onto the next mission element.
Return true if we do not recognize the command so that we move on to the next command
*******************************************************************************/
bool Copter::ModeAuto::verify_command(const AP_Mission::Mission_Command& cmd)
{
switch(cmd.id) {
//
// navigation commands
//
case MAV_CMD_NAV_TAKEOFF:
return verify_takeoff();
case MAV_CMD_NAV_WAYPOINT:
return verify_nav_wp(cmd);
case MAV_CMD_NAV_LAND:
return verify_land();
case MAV_CMD_NAV_PAYLOAD_PLACE:
return verify_payload_place();
case MAV_CMD_NAV_LOITER_UNLIM:
return verify_loiter_unlimited();
case MAV_CMD_NAV_LOITER_TURNS:
return verify_circle(cmd);
case MAV_CMD_NAV_LOITER_TIME:
return verify_loiter_time();
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
return verify_RTL();
case MAV_CMD_NAV_SPLINE_WAYPOINT:
return verify_spline_wp(cmd);
#if NAV_GUIDED == ENABLED
case MAV_CMD_NAV_GUIDED_ENABLE:
return verify_nav_guided_enable(cmd);
#endif
case MAV_CMD_NAV_DELAY:
return verify_nav_delay(cmd);
///
/// conditional commands
///
case MAV_CMD_CONDITION_DELAY:
return verify_wait_delay();
case MAV_CMD_CONDITION_DISTANCE:
return verify_within_distance();
case MAV_CMD_CONDITION_YAW:
return verify_yaw();
// do commands (always return true)
case MAV_CMD_DO_CHANGE_SPEED:
case MAV_CMD_DO_SET_HOME:
case MAV_CMD_DO_SET_SERVO:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_REPEAT_SERVO:
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_SET_ROI:
case MAV_CMD_DO_MOUNT_CONTROL:
case MAV_CMD_DO_CONTROL_VIDEO:
case MAV_CMD_DO_DIGICAM_CONFIGURE:
case MAV_CMD_DO_DIGICAM_CONTROL:
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
case MAV_CMD_DO_PARACHUTE: // assume parachute was released successfully
case MAV_CMD_DO_GRIPPER:
case MAV_CMD_DO_GUIDED_LIMITS:
case MAV_CMD_DO_FENCE_ENABLE:
case MAV_CMD_DO_WINCH:
return true;
default:
// error message
gcs().send_text(MAV_SEVERITY_WARNING,"Skipping invalid cmd #%i",cmd.id);
// return true if we do not recognize the command so that we move on to the next command
return true;
}
}
// auto_takeoff_run - takeoff in auto mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::takeoff_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
// initialise wpnav targets
wp_nav->shift_wp_origin_to_current_pos();
zero_throttle_and_relax_ac();
// clear i term when we're taking off
set_throttle_takeoff();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
#if FRAME_CONFIG == HELI_FRAME
// helicopters stay in landed state until rotor speed runup has finished
if (motors->rotor_runup_complete()) {
set_land_complete(false);
} else {
// initialise wpnav targets
wp_nav->shift_wp_origin_to_current_pos();
}
#else
set_land_complete(false);
#endif
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
copter.auto_takeoff_attitude_run(target_yaw_rate);
}
// auto_wp_run - runs the auto waypoint controller
// called by auto_run at 100hz or more
void Copter::ModeAuto::wp_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
// To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off
// (of course it would be better if people just used take-off)
zero_throttle_and_relax_ac();
// clear i term when we're taking off
set_throttle_takeoff();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
if (copter.auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate);
} else {
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true);
}
}
// auto_spline_run - runs the auto spline controller
// called by auto_run at 100hz or more
void Copter::ModeAuto::spline_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
// To-Do: reset waypoint origin to current location because copter is probably on the ground so we don't want it lurching left or right on take-off
// (of course it would be better if people just used take-off)
zero_throttle_and_relax_ac();
// clear i term when we're taking off
set_throttle_takeoff();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rat
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
wp_nav->update_spline();
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
if (copter.auto_yaw_mode == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate);
} else {
// roll, pitch from waypoint controller, yaw heading from auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(), true);
}
}
// auto_land_run - lands in auto mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::land_run()
{
// if not auto armed or landed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
zero_throttle_and_relax_ac();
// set target to current position
loiter_nav->init_target();
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
land_run_horizontal_control();
land_run_vertical_control();
}
// auto_rtl_run - rtl in AUTO flight mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::rtl_run()
{
// call regular rtl flight mode run function
copter.mode_rtl.run(false);
}
// auto_circle_run - circle in AUTO flight mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::circle_run()
{
2014-01-27 10:43:48 -04:00
// call circle controller
copter.circle_nav->update();
2014-01-27 10:43:48 -04:00
// call z-axis position controller
pos_control->update_z_controller();
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_yaw(copter.circle_nav->get_roll(), copter.circle_nav->get_pitch(), copter.circle_nav->get_yaw(), true);
}
#if NAV_GUIDED == ENABLED
// auto_nav_guided_run - allows control by external navigation controller
// called by auto_run at 100hz or more
void Copter::ModeAuto::nav_guided_run()
{
// call regular guided flight mode run function
copter.mode_guided.run();
}
#endif // NAV_GUIDED
// auto_loiter_run - loiter in AUTO flight mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::loiter_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) {
zero_throttle_and_relax_ac();
return;
}
// accept pilot input of yaw
float target_yaw_rate = 0;
if(!copter.failsafe.radio) {
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint and z-axis position controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
pos_control->update_z_controller();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate);
}
// auto_payload_place_start - initialises controller to implement placement of a load
void Copter::ModeAuto::payload_place_start(const Vector3f& destination)
{
_mode = Auto_NavPayloadPlace;
nav_payload_place.state = PayloadPlaceStateType_Calibrating_Hover_Start;
// initialise loiter target destination
loiter_nav->init_target(destination);
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target(inertial_nav.get_altitude());
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
// initialise yaw
set_auto_yaw_mode(AUTO_YAW_HOLD);
}
// auto_payload_place_run - places an object in auto mode
// called by auto_run at 100hz or more
void Copter::ModeAuto::payload_place_run()
{
if (!payload_place_run_should_run()) {
zero_throttle_and_relax_ac();
// set target to current position
loiter_nav->init_target();
return;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
switch (nav_payload_place.state) {
case PayloadPlaceStateType_FlyToLocation:
case PayloadPlaceStateType_Calibrating_Hover_Start:
case PayloadPlaceStateType_Calibrating_Hover:
return payload_place_run_loiter();
case PayloadPlaceStateType_Descending_Start:
case PayloadPlaceStateType_Descending:
return payload_place_run_descend();
case PayloadPlaceStateType_Releasing_Start:
case PayloadPlaceStateType_Releasing:
case PayloadPlaceStateType_Released:
case PayloadPlaceStateType_Ascending_Start:
case PayloadPlaceStateType_Ascending:
case PayloadPlaceStateType_Done:
return payload_place_run_loiter();
}
}
bool Copter::ModeAuto::payload_place_run_should_run()
{
// muts be armed
if (!motors->armed()) {
return false;
}
// muts be auto-armed
if (!ap.auto_armed) {
return false;
}
// must not be landed
if (ap.land_complete) {
return false;
}
// interlock must be enabled (i.e. unsafe)
if (!motors->get_interlock()) {
return false;
}
return true;
}
void Copter::ModeAuto::payload_place_run_loiter()
{
// loiter...
land_run_horizontal_control();
// run loiter controller
loiter_nav->update(ekfGndSpdLimit, ekfNavVelGainScaler);
// call attitude controller
const float target_yaw_rate = 0;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate);
// call position controller
pos_control->update_z_controller();
}
void Copter::ModeAuto::payload_place_run_descend()
{
land_run_horizontal_control();
land_run_vertical_control();
}
// terrain_adjusted_location: returns a Location with lat/lon from cmd
// and altitude from our current altitude adjusted for location
Location_Class Copter::ModeAuto::terrain_adjusted_location(const AP_Mission::Mission_Command& cmd) const
{
// convert to location class
Location_Class target_loc(cmd.content.location);
const Location_Class &current_loc = copter.current_loc;
// decide if we will use terrain following
int32_t curr_terr_alt_cm, target_terr_alt_cm;
if (current_loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, curr_terr_alt_cm) &&
target_loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, target_terr_alt_cm)) {
curr_terr_alt_cm = MAX(curr_terr_alt_cm,200);
// if using terrain, set target altitude to current altitude above terrain
target_loc.set_alt_cm(curr_terr_alt_cm, Location_Class::ALT_FRAME_ABOVE_TERRAIN);
} else {
// set target altitude to current altitude above home
target_loc.set_alt_cm(current_loc.alt, Location_Class::ALT_FRAME_ABOVE_HOME);
}
return target_loc;
}
/********************************************************************************/
// Nav (Must) commands
/********************************************************************************/
// do_takeoff - initiate takeoff navigation command
void Copter::ModeAuto::do_takeoff(const AP_Mission::Mission_Command& cmd)
{
// Set wp navigation target to safe altitude above current position
takeoff_start(cmd.content.location);
}
// do_nav_wp - initiate move to next waypoint
void Copter::ModeAuto::do_nav_wp(const AP_Mission::Mission_Command& cmd)
{
Location_Class target_loc(cmd.content.location);
const Location_Class &current_loc = copter.current_loc;
// use current lat, lon if zero
if (target_loc.lat == 0 && target_loc.lng == 0) {
target_loc.lat = current_loc.lat;
target_loc.lng = current_loc.lng;
}
// use current altitude if not provided
if (target_loc.alt == 0) {
// set to current altitude but in command's alt frame
int32_t curr_alt;
if (current_loc.get_alt_cm(target_loc.get_alt_frame(),curr_alt)) {
target_loc.set_alt_cm(curr_alt, target_loc.get_alt_frame());
} else {
// default to current altitude as alt-above-home
target_loc.set_alt_cm(current_loc.alt, current_loc.get_alt_frame());
}
}
// this will be used to remember the time in millis after we reach or pass the WP.
loiter_time = 0;
// this is the delay, stored in seconds
loiter_time_max = cmd.p1;
// Set wp navigation target
wp_start(target_loc);
// if no delay as well as not final waypoint set the waypoint as "fast"
AP_Mission::Mission_Command temp_cmd;
if (loiter_time_max == 0 && copter.mission.get_next_nav_cmd(cmd.index+1, temp_cmd)) {
copter.wp_nav->set_fast_waypoint(true);
}
}
// do_land - initiate landing procedure
void Copter::ModeAuto::do_land(const AP_Mission::Mission_Command& cmd)
{
// To-Do: check if we have already landed
// if location provided we fly to that location at current altitude
if (cmd.content.location.lat != 0 || cmd.content.location.lng != 0) {
// set state to fly to location
land_state = LandStateType_FlyToLocation;
Location_Class target_loc = terrain_adjusted_location(cmd);
wp_start(target_loc);
}else{
// set landing state
land_state = LandStateType_Descending;
// initialise landing controller
land_start();
}
}
// do_loiter_unlimited - start loitering with no end conditions
// note: caller should set yaw_mode
void Copter::ModeAuto::do_loiter_unlimited(const AP_Mission::Mission_Command& cmd)
{
// convert back to location
Location_Class target_loc(cmd.content.location);
const Location_Class &current_loc = copter.current_loc;
// use current location if not provided
if (target_loc.lat == 0 && target_loc.lng == 0) {
// To-Do: make this simpler
Vector3f temp_pos;
copter.wp_nav->get_wp_stopping_point_xy(temp_pos);
Location_Class temp_loc(temp_pos);
target_loc.lat = temp_loc.lat;
target_loc.lng = temp_loc.lng;
}
// use current altitude if not provided
// To-Do: use z-axis stopping point instead of current alt
if (target_loc.alt == 0) {
// set to current altitude but in command's alt frame
int32_t curr_alt;
if (current_loc.get_alt_cm(target_loc.get_alt_frame(),curr_alt)) {
target_loc.set_alt_cm(curr_alt, target_loc.get_alt_frame());
} else {
// default to current altitude as alt-above-home
target_loc.set_alt_cm(current_loc.alt, current_loc.get_alt_frame());
}
}
// start way point navigator and provide it the desired location
wp_start(target_loc);
}
// do_circle - initiate moving in a circle
void Copter::ModeAuto::do_circle(const AP_Mission::Mission_Command& cmd)
{
Location_Class circle_center(cmd.content.location);
const Location_Class &current_loc = copter.current_loc;
// default lat/lon to current position if not provided
// To-Do: use stopping point or position_controller's target instead of current location to avoid jerk?
if (circle_center.lat == 0 && circle_center.lng == 0) {
circle_center.lat = current_loc.lat;
circle_center.lng = current_loc.lng;
}
// default target altitude to current altitude if not provided
if (circle_center.alt == 0) {
int32_t curr_alt;
if (current_loc.get_alt_cm(circle_center.get_alt_frame(),curr_alt)) {
// circle altitude uses frame from command
circle_center.set_alt_cm(curr_alt,circle_center.get_alt_frame());
} else {
// default to current altitude above origin
circle_center.set_alt_cm(current_loc.alt, current_loc.get_alt_frame());
copter.Log_Write_Error(ERROR_SUBSYSTEM_TERRAIN, ERROR_CODE_MISSING_TERRAIN_DATA);
}
}
// calculate radius
uint8_t circle_radius_m = HIGHBYTE(cmd.p1); // circle radius held in high byte of p1
// move to edge of circle (verify_circle) will ensure we begin circling once we reach the edge
circle_movetoedge_start(circle_center, circle_radius_m);
}
// do_loiter_time - initiate loitering at a point for a given time period
// note: caller should set yaw_mode
void Copter::ModeAuto::do_loiter_time(const AP_Mission::Mission_Command& cmd)
{
// re-use loiter unlimited
do_loiter_unlimited(cmd);
// setup loiter timer
loiter_time = 0;
loiter_time_max = cmd.p1; // units are (seconds)
}
// do_spline_wp - initiate move to next waypoint
void Copter::ModeAuto::do_spline_wp(const AP_Mission::Mission_Command& cmd)
{
Location_Class target_loc(cmd.content.location);
const Location_Class &current_loc = copter.current_loc;
// use current lat, lon if zero
if (target_loc.lat == 0 && target_loc.lng == 0) {
target_loc.lat = current_loc.lat;
target_loc.lng = current_loc.lng;
}
// use current altitude if not provided
if (target_loc.alt == 0) {
// set to current altitude but in command's alt frame
int32_t curr_alt;
if (current_loc.get_alt_cm(target_loc.get_alt_frame(),curr_alt)) {
target_loc.set_alt_cm(curr_alt, target_loc.get_alt_frame());
} else {
// default to current altitude as alt-above-home
target_loc.set_alt_cm(current_loc.alt, current_loc.get_alt_frame());
}
}
// this will be used to remember the time in millis after we reach or pass the WP.
loiter_time = 0;
// this is the delay, stored in seconds
loiter_time_max = cmd.p1;
// determine segment start and end type
bool stopped_at_start = true;
AC_WPNav::spline_segment_end_type seg_end_type = AC_WPNav::SEGMENT_END_STOP;
AP_Mission::Mission_Command temp_cmd;
// if previous command was a wp_nav command with no delay set stopped_at_start to false
// To-Do: move processing of delay into wp-nav controller to allow it to determine the stopped_at_start value itself?
uint16_t prev_cmd_idx = copter.mission.get_prev_nav_cmd_index();
if (prev_cmd_idx != AP_MISSION_CMD_INDEX_NONE) {
if (copter.mission.read_cmd_from_storage(prev_cmd_idx, temp_cmd)) {
if ((temp_cmd.id == MAV_CMD_NAV_WAYPOINT || temp_cmd.id == MAV_CMD_NAV_SPLINE_WAYPOINT) && temp_cmd.p1 == 0) {
stopped_at_start = false;
}
}
}
// if there is no delay at the end of this segment get next nav command
Location_Class next_loc;
if (cmd.p1 == 0 && copter.mission.get_next_nav_cmd(cmd.index+1, temp_cmd)) {
next_loc = temp_cmd.content.location;
// default lat, lon to first waypoint's lat, lon
if (next_loc.lat == 0 && next_loc.lng == 0) {
next_loc.lat = target_loc.lat;
next_loc.lng = target_loc.lng;
}
// default alt to first waypoint's alt but in next waypoint's alt frame
if (next_loc.alt == 0) {
int32_t next_alt;
if (target_loc.get_alt_cm(next_loc.get_alt_frame(), next_alt)) {
next_loc.set_alt_cm(next_alt, next_loc.get_alt_frame());
} else {
// default to first waypoints altitude
next_loc.set_alt_cm(target_loc.alt, target_loc.get_alt_frame());
}
}
// if the next nav command is a waypoint set end type to spline or straight
if (temp_cmd.id == MAV_CMD_NAV_WAYPOINT) {
seg_end_type = AC_WPNav::SEGMENT_END_STRAIGHT;
}else if (temp_cmd.id == MAV_CMD_NAV_SPLINE_WAYPOINT) {
seg_end_type = AC_WPNav::SEGMENT_END_SPLINE;
}
}
// set spline navigation target
spline_start(target_loc, stopped_at_start, seg_end_type, next_loc);
}
#if NAV_GUIDED == ENABLED
// do_nav_guided_enable - initiate accepting commands from external nav computer
void Copter::ModeAuto::do_nav_guided_enable(const AP_Mission::Mission_Command& cmd)
{
if (cmd.p1 > 0) {
// initialise guided limits
copter.mode_guided.limit_init_time_and_pos();
// set spline navigation target
nav_guided_start();
}
}
// do_guided_limits - pass guided limits to guided controller
void Copter::ModeAuto::do_guided_limits(const AP_Mission::Mission_Command& cmd)
{
copter.mode_guided.limit_set(
cmd.p1 * 1000, // convert seconds to ms
cmd.content.guided_limits.alt_min * 100.0f, // convert meters to cm
cmd.content.guided_limits.alt_max * 100.0f, // convert meters to cm
cmd.content.guided_limits.horiz_max * 100.0f); // convert meters to cm
}
#endif // NAV_GUIDED
// do_nav_delay - Delay the next navigation command
void Copter::ModeAuto::do_nav_delay(const AP_Mission::Mission_Command& cmd)
{
nav_delay_time_start = millis();
if (cmd.content.nav_delay.seconds > 0) {
// relative delay
nav_delay_time_max = cmd.content.nav_delay.seconds * 1000; // convert seconds to milliseconds
} else {
// absolute delay to utc time
nav_delay_time_max = hal.util->get_time_utc(cmd.content.nav_delay.hour_utc, cmd.content.nav_delay.min_utc, cmd.content.nav_delay.sec_utc, 0);
}
gcs().send_text(MAV_SEVERITY_INFO, "Delaying %u sec",(unsigned int)(nav_delay_time_max/1000));
}
/********************************************************************************/
// Condition (May) commands
/********************************************************************************/
void Copter::ModeAuto::do_wait_delay(const AP_Mission::Mission_Command& cmd)
{
condition_start = millis();
condition_value = cmd.content.delay.seconds * 1000; // convert seconds to milliseconds
}
void Copter::ModeAuto::do_within_distance(const AP_Mission::Mission_Command& cmd)
{
condition_value = cmd.content.distance.meters * 100;
}
void Copter::ModeAuto::do_yaw(const AP_Mission::Mission_Command& cmd)
{
set_auto_yaw_look_at_heading(
cmd.content.yaw.angle_deg,
cmd.content.yaw.turn_rate_dps,
cmd.content.yaw.direction,
cmd.content.yaw.relative_angle > 0);
}
/********************************************************************************/
// Do (Now) commands
/********************************************************************************/
void Copter::ModeAuto::do_change_speed(const AP_Mission::Mission_Command& cmd)
{
if (cmd.content.speed.target_ms > 0) {
copter.wp_nav->set_speed_xy(cmd.content.speed.target_ms * 100.0f);
}
}
void Copter::ModeAuto::do_set_home(const AP_Mission::Mission_Command& cmd)
{
if(cmd.p1 == 1 || (cmd.content.location.lat == 0 && cmd.content.location.lng == 0 && cmd.content.location.alt == 0)) {
copter.set_home_to_current_location(false);
} else {
copter.set_home(cmd.content.location, false);
}
}
// do_roi - starts actions required by MAV_CMD_DO_SET_ROI
// this involves either moving the camera to point at the ROI (region of interest)
// and possibly rotating the copter to point at the ROI if our mount type does not support a yaw feature
// TO-DO: add support for other features of MAV_CMD_DO_SET_ROI including pointing at a given waypoint
void Copter::ModeAuto::do_roi(const AP_Mission::Mission_Command& cmd)
{
copter.set_auto_yaw_roi(cmd.content.location);
}
// point the camera to a specified angle
void Copter::ModeAuto::do_mount_control(const AP_Mission::Mission_Command& cmd)
{
#if MOUNT == ENABLED
if(!copter.camera_mount.has_pan_control()) {
copter.set_auto_yaw_look_at_heading(cmd.content.mount_control.yaw,0.0f,0,0);
}
copter.camera_mount.set_angle_targets(cmd.content.mount_control.roll, cmd.content.mount_control.pitch, cmd.content.mount_control.yaw);
#endif
}
#if CAMERA == ENABLED
// do_digicam_configure Send Digicam Configure message with the camera library
void Copter::ModeAuto::do_digicam_configure(const AP_Mission::Mission_Command& cmd)
{
copter.camera.configure(
cmd.content.digicam_configure.shooting_mode,
cmd.content.digicam_configure.shutter_speed,
cmd.content.digicam_configure.aperture,
cmd.content.digicam_configure.ISO,
cmd.content.digicam_configure.exposure_type,
cmd.content.digicam_configure.cmd_id,
cmd.content.digicam_configure.engine_cutoff_time);
}
// do_digicam_control Send Digicam Control message with the camera library
void Copter::ModeAuto::do_digicam_control(const AP_Mission::Mission_Command& cmd)
{
copter.camera.control(cmd.content.digicam_control.session,
cmd.content.digicam_control.zoom_pos,
cmd.content.digicam_control.zoom_step,
cmd.content.digicam_control.focus_lock,
cmd.content.digicam_control.shooting_cmd,
cmd.content.digicam_control.cmd_id);
}
#endif
#if PARACHUTE == ENABLED
// do_parachute - configure or release parachute
void Copter::ModeAuto::do_parachute(const AP_Mission::Mission_Command& cmd)
{
switch (cmd.p1) {
case PARACHUTE_DISABLE:
copter.parachute.enabled(false);
Log_Write_Event(DATA_PARACHUTE_DISABLED);
break;
case PARACHUTE_ENABLE:
copter.parachute.enabled(true);
Log_Write_Event(DATA_PARACHUTE_ENABLED);
break;
case PARACHUTE_RELEASE:
copter.parachute_release();
break;
default:
// do nothing
break;
}
}
#endif
#if GRIPPER_ENABLED == ENABLED
// do_gripper - control gripper
void Copter::ModeAuto::do_gripper(const AP_Mission::Mission_Command& cmd)
{
// Note: we ignore the gripper num parameter because we only support one gripper
switch (cmd.content.gripper.action) {
case GRIPPER_ACTION_RELEASE:
g2.gripper.release();
Log_Write_Event(DATA_GRIPPER_RELEASE);
break;
case GRIPPER_ACTION_GRAB:
g2.gripper.grab();
Log_Write_Event(DATA_GRIPPER_GRAB);
break;
default:
// do nothing
break;
}
}
#endif
#if WINCH_ENABLED == ENABLED
// control winch based on mission command
void Copter::ModeAuto::do_winch(const AP_Mission::Mission_Command& cmd)
{
// Note: we ignore the gripper num parameter because we only support one gripper
switch (cmd.content.winch.action) {
case WINCH_RELAXED:
g2.winch.relax();
Log_Write_Event(DATA_WINCH_RELAXED);
break;
case WINCH_RELATIVE_LENGTH_CONTROL:
g2.winch.release_length(cmd.content.winch.release_length, cmd.content.winch.release_rate);
Log_Write_Event(DATA_WINCH_LENGTH_CONTROL);
break;
case WINCH_RATE_CONTROL:
g2.winch.set_desired_rate(cmd.content.winch.release_rate);
Log_Write_Event(DATA_WINCH_RATE_CONTROL);
break;
default:
// do nothing
break;
}
}
#endif
// do_payload_place - initiate placing procedure
void Copter::ModeAuto::do_payload_place(const AP_Mission::Mission_Command& cmd)
{
// if location provided we fly to that location at current altitude
if (cmd.content.location.lat != 0 || cmd.content.location.lng != 0) {
// set state to fly to location
nav_payload_place.state = PayloadPlaceStateType_FlyToLocation;
Location_Class target_loc = terrain_adjusted_location(cmd);
wp_start(target_loc);
} else {
nav_payload_place.state = PayloadPlaceStateType_Calibrating_Hover_Start;
// initialise placing controller
payload_place_start();
}
nav_payload_place.descend_max = cmd.p1;
}
// do_RTL - start Return-to-Launch
void Copter::ModeAuto::do_RTL(void)
{
// start rtl in auto flight mode
rtl_start();
}
/********************************************************************************/
// Verify Nav (Must) commands
/********************************************************************************/
// verify_takeoff - check if we have completed the takeoff
bool Copter::ModeAuto::verify_takeoff()
{
// have we reached our target altitude?
return copter.wp_nav->reached_wp_destination();
}
// verify_land - returns true if landing has been completed
bool Copter::ModeAuto::verify_land()
{
bool retval = false;
switch (land_state) {
case LandStateType_FlyToLocation:
// check if we've reached the location
if (copter.wp_nav->reached_wp_destination()) {
// get destination so we can use it for loiter target
Vector3f dest = copter.wp_nav->get_wp_destination();
// initialise landing controller
land_start(dest);
// advance to next state
land_state = LandStateType_Descending;
}
break;
case LandStateType_Descending:
// rely on THROTTLE_LAND mode to correctly update landing status
retval = ap.land_complete;
break;
default:
// this should never happen
// TO-DO: log an error
retval = true;
break;
}
// true is returned if we've successfully landed
return retval;
}
#define NAV_PAYLOAD_PLACE_DEBUGGING 0
#if NAV_PAYLOAD_PLACE_DEBUGGING
#include <stdio.h>
#define debug(fmt, args ...) do {::fprintf(stderr,"%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); } while(0)
#else
#define debug(fmt, args ...)
#endif
// verify_payload_place - returns true if placing has been completed
bool Copter::ModeAuto::verify_payload_place()
{
const uint16_t hover_throttle_calibrate_time = 2000; // milliseconds
const uint16_t descend_throttle_calibrate_time = 2000; // milliseconds
const float hover_throttle_placed_fraction = 0.7; // i.e. if throttle is less than 70% of hover we have placed
const float descent_throttle_placed_fraction = 0.9; // i.e. if throttle is less than 90% of descent throttle we have placed
const uint16_t placed_time = 500; // how long we have to be below a throttle threshold before considering placed
const float current_throttle_level = motors->get_throttle();
const uint32_t now = AP_HAL::millis();
// if we discover we've landed then immediately release the load:
if (ap.land_complete) {
switch (nav_payload_place.state) {
case PayloadPlaceStateType_FlyToLocation:
case PayloadPlaceStateType_Calibrating_Hover_Start:
case PayloadPlaceStateType_Calibrating_Hover:
case PayloadPlaceStateType_Descending_Start:
case PayloadPlaceStateType_Descending:
gcs().send_text(MAV_SEVERITY_INFO, "NAV_PLACE: landed");
nav_payload_place.state = PayloadPlaceStateType_Releasing_Start;
break;
case PayloadPlaceStateType_Releasing_Start:
case PayloadPlaceStateType_Releasing:
case PayloadPlaceStateType_Released:
case PayloadPlaceStateType_Ascending_Start:
case PayloadPlaceStateType_Ascending:
case PayloadPlaceStateType_Done:
break;
}
}
switch (nav_payload_place.state) {
case PayloadPlaceStateType_FlyToLocation:
if (!copter.wp_nav->reached_wp_destination()) {
return false;
}
// we're there; set loiter target
nav_payload_place.state = PayloadPlaceStateType_Calibrating_Hover_Start;
FALLTHROUGH;
case PayloadPlaceStateType_Calibrating_Hover_Start:
// hover for 1 second to get an idea of what our hover
// throttle looks like
debug("Calibrate start");
nav_payload_place.hover_start_timestamp = now;
nav_payload_place.state = PayloadPlaceStateType_Calibrating_Hover;
FALLTHROUGH;
case PayloadPlaceStateType_Calibrating_Hover: {
if (now - nav_payload_place.hover_start_timestamp < hover_throttle_calibrate_time) {
// still calibrating...
debug("Calibrate Timer: %d", now - nav_payload_place.hover_start_timestamp);
return false;
}
// we have a valid calibration. Hopefully.
nav_payload_place.hover_throttle_level = current_throttle_level;
const float hover_throttle_delta = fabsf(nav_payload_place.hover_throttle_level - motors->get_throttle_hover());
gcs().send_text(MAV_SEVERITY_INFO, "hover throttle delta: %f", static_cast<double>(hover_throttle_delta));
nav_payload_place.state = PayloadPlaceStateType_Descending_Start;
}
FALLTHROUGH;
case PayloadPlaceStateType_Descending_Start:
nav_payload_place.descend_start_timestamp = now;
nav_payload_place.descend_start_altitude = inertial_nav.get_altitude();
nav_payload_place.descend_throttle_level = 0;
nav_payload_place.state = PayloadPlaceStateType_Descending;
FALLTHROUGH;
case PayloadPlaceStateType_Descending:
// make sure we don't descend too far:
debug("descended: %f cm (%f cm max)", (nav_payload_place.descend_start_altitude - inertial_nav.get_altitude()), nav_payload_place.descend_max);
if (!is_zero(nav_payload_place.descend_max) &&
nav_payload_place.descend_start_altitude - inertial_nav.get_altitude() > nav_payload_place.descend_max) {
nav_payload_place.state = PayloadPlaceStateType_Ascending;
gcs().send_text(MAV_SEVERITY_WARNING, "Reached maximum descent");
return false; // we'll do any cleanups required next time through the loop
}
// see if we've been descending long enough to calibrate a descend-throttle-level:
if (is_zero(nav_payload_place.descend_throttle_level) &&
now - nav_payload_place.descend_start_timestamp > descend_throttle_calibrate_time) {
nav_payload_place.descend_throttle_level = current_throttle_level;
}
// watch the throttle to determine whether the load has been placed
// debug("hover ratio: %f descend ratio: %f\n", current_throttle_level/nav_payload_place.hover_throttle_level, ((nav_payload_place.descend_throttle_level == 0) ? -1.0f : current_throttle_level/nav_payload_place.descend_throttle_level));
if (current_throttle_level/nav_payload_place.hover_throttle_level > hover_throttle_placed_fraction &&
(is_zero(nav_payload_place.descend_throttle_level) ||
current_throttle_level/nav_payload_place.descend_throttle_level > descent_throttle_placed_fraction)) {
// throttle is above both threshold ratios (or above hover threshold ration and descent threshold ratio not yet valid)
nav_payload_place.place_start_timestamp = 0;
return false;
}
if (nav_payload_place.place_start_timestamp == 0) {
// we've only just now hit the correct throttle level
nav_payload_place.place_start_timestamp = now;
return false;
} else if (now - nav_payload_place.place_start_timestamp < placed_time) {
// keep going down....
debug("Place Timer: %d", now - nav_payload_place.place_start_timestamp);
return false;
}
nav_payload_place.state = PayloadPlaceStateType_Releasing_Start;
FALLTHROUGH;
case PayloadPlaceStateType_Releasing_Start:
#if GRIPPER_ENABLED == ENABLED
if (g2.gripper.valid()) {
gcs().send_text(MAV_SEVERITY_INFO, "Releasing the gripper");
g2.gripper.release();
} else {
gcs().send_text(MAV_SEVERITY_INFO, "Gripper not valid");
nav_payload_place.state = PayloadPlaceStateType_Ascending_Start;
break;
}
#else
gcs().send_text(MAV_SEVERITY_INFO, "Gripper code disabled");
#endif
nav_payload_place.state = PayloadPlaceStateType_Releasing;
FALLTHROUGH;
case PayloadPlaceStateType_Releasing:
#if GRIPPER_ENABLED == ENABLED
if (g2.gripper.valid() && !g2.gripper.released()) {
return false;
}
#endif
nav_payload_place.state = PayloadPlaceStateType_Released;
FALLTHROUGH;
case PayloadPlaceStateType_Released: {
nav_payload_place.state = PayloadPlaceStateType_Ascending_Start;
}
FALLTHROUGH;
case PayloadPlaceStateType_Ascending_Start: {
Location_Class target_loc = inertial_nav.get_position();
target_loc.alt = nav_payload_place.descend_start_altitude;
wp_start(target_loc);
nav_payload_place.state = PayloadPlaceStateType_Ascending;
}
FALLTHROUGH;
case PayloadPlaceStateType_Ascending:
if (!copter.wp_nav->reached_wp_destination()) {
return false;
}
nav_payload_place.state = PayloadPlaceStateType_Done;
FALLTHROUGH;
case PayloadPlaceStateType_Done:
return true;
default:
// this should never happen
// TO-DO: log an error
return true;
}
// should never get here
return true;
}
#undef debug
bool Copter::ModeAuto::verify_loiter_unlimited()
{
return false;
}
2014-01-27 10:43:48 -04:00
// verify_loiter_time - check if we have loitered long enough
bool Copter::ModeAuto::verify_loiter_time()
{
// return immediately if we haven't reached our destination
if (!copter.wp_nav->reached_wp_destination()) {
return false;
}
// start our loiter timer
if( loiter_time == 0 ) {
loiter_time = millis();
}
// check if loiter timer has run out
return (((millis() - loiter_time) / 1000) >= loiter_time_max);
2014-01-27 10:43:48 -04:00
}
// verify_RTL - handles any state changes required to implement RTL
// do_RTL should have been called once first to initialise all variables
// returns true with RTL has completed successfully
bool Copter::ModeAuto::verify_RTL()
{
return (copter.mode_rtl.state_complete() && (copter.mode_rtl.state() == RTL_FinalDescent || copter.mode_rtl.state() == RTL_Land));
}
/********************************************************************************/
// Verify Condition (May) commands
/********************************************************************************/
bool Copter::ModeAuto::verify_wait_delay()
{
if (millis() - condition_start > (uint32_t)MAX(condition_value,0)) {
condition_value = 0;
return true;
}
return false;
}
bool Copter::ModeAuto::verify_within_distance()
{
if (wp_distance() < (uint32_t)MAX(condition_value,0)) {
condition_value = 0;
return true;
}
return false;
}
// verify_yaw - return true if we have reached the desired heading
bool Copter::ModeAuto::verify_yaw()
{
// set yaw mode if it has been changed (the waypoint controller often retakes control of yaw as it executes a new waypoint command)
if (auto_yaw_mode != AUTO_YAW_LOOK_AT_HEADING) {
set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING);
}
// check if we are within 2 degrees of the target heading
if (labs(wrap_180_cd(ahrs.yaw_sensor-copter.yaw_look_at_heading)) <= 200) {
return true;
}else{
return false;
}
}
// verify_nav_wp - check if we have reached the next way point
bool Copter::ModeAuto::verify_nav_wp(const AP_Mission::Mission_Command& cmd)
{
// check if we have reached the waypoint
if( !copter.wp_nav->reached_wp_destination() ) {
return false;
}
// play a tone
AP_Notify::events.waypoint_complete = 1;
// start timer if necessary
if(loiter_time == 0) {
loiter_time = millis();
}
// check if timer has run out
if (((millis() - loiter_time) / 1000) >= loiter_time_max) {
gcs().send_text(MAV_SEVERITY_INFO, "Reached command #%i",cmd.index);
return true;
}else{
return false;
}
}
// verify_circle - check if we have circled the point enough
bool Copter::ModeAuto::verify_circle(const AP_Mission::Mission_Command& cmd)
2014-10-19 22:54:57 -03:00
{
// check if we've reached the edge
if (mode() == Auto_CircleMoveToEdge) {
if (copter.wp_nav->reached_wp_destination()) {
const Vector3f curr_pos = copter.inertial_nav.get_position();
Vector3f circle_center = copter.pv_location_to_vector(cmd.content.location);
// set target altitude if not provided
if (is_zero(circle_center.z)) {
circle_center.z = curr_pos.z;
}
// set lat/lon position if not provided
if (cmd.content.location.lat == 0 && cmd.content.location.lng == 0) {
circle_center.x = curr_pos.x;
circle_center.y = curr_pos.y;
}
// start circling
circle_start();
}
return false;
}
// check if we have completed circling
return fabsf(copter.circle_nav->get_angle_total()/M_2PI) >= LOWBYTE(cmd.p1);
}
// verify_spline_wp - check if we have reached the next way point using spline
bool Copter::ModeAuto::verify_spline_wp(const AP_Mission::Mission_Command& cmd)
{
// check if we have reached the waypoint
if( !copter.wp_nav->reached_wp_destination() ) {
return false;
}
// start timer if necessary
if(loiter_time == 0) {
loiter_time = millis();
}
2016-01-13 03:09:03 -04:00
// check if timer has run out
if (((millis() - loiter_time) / 1000) >= loiter_time_max) {
gcs().send_text(MAV_SEVERITY_INFO, "Reached command #%i",cmd.index);
return true;
}else{
return false;
}
}
#if NAV_GUIDED == ENABLED
// verify_nav_guided - check if we have breached any limits
bool Copter::ModeAuto::verify_nav_guided_enable(const AP_Mission::Mission_Command& cmd)
{
// if disabling guided mode then immediately return true so we move to next command
if (cmd.p1 == 0) {
return true;
}
// check time and position limits
return copter.mode_guided.limit_check();
}
#endif // NAV_GUIDED
// verify_nav_delay - check if we have waited long enough
bool Copter::ModeAuto::verify_nav_delay(const AP_Mission::Mission_Command& cmd)
{
if (millis() - nav_delay_time_start > (uint32_t)MAX(nav_delay_time_max,0)) {
nav_delay_time_max = 0;
return true;
}
return false;
}
#endif
// get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter
// set rtl parameter to true if this is during an RTL
uint8_t Copter::get_default_auto_yaw_mode(bool rtl)
{
switch (g.wp_yaw_behavior) {
case WP_YAW_BEHAVIOR_NONE:
return AUTO_YAW_HOLD;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL:
if (rtl) {
return AUTO_YAW_HOLD;
} else {
return AUTO_YAW_LOOK_AT_NEXT_WP;
}
case WP_YAW_BEHAVIOR_LOOK_AHEAD:
return AUTO_YAW_LOOK_AHEAD;
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP:
default:
return AUTO_YAW_LOOK_AT_NEXT_WP;
}
}
// set_auto_yaw_mode - sets the yaw mode for auto
void Copter::set_auto_yaw_mode(uint8_t yaw_mode)
{
// return immediately if no change
if (auto_yaw_mode == yaw_mode) {
return;
}
auto_yaw_mode = yaw_mode;
// perform initialisation
switch (auto_yaw_mode) {
case AUTO_YAW_LOOK_AT_NEXT_WP:
2014-03-23 08:41:32 -03:00
// wpnav will initialise heading when wpnav's set_destination method is called
break;
case AUTO_YAW_ROI:
// point towards a location held in yaw_look_at_WP
yaw_look_at_WP_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading
// caller should set the yaw_look_at_heading
break;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
yaw_look_ahead_bearing = ahrs.yaw_sensor;
break;
case AUTO_YAW_RESETTOARMEDYAW:
// initial_armed_bearing will be set during arming so no init required
break;
case AUTO_YAW_RATE:
// initialise target yaw rate to zero
auto_yaw_rate_cds = 0.0f;
break;
}
}
2014-10-20 23:52:22 -03:00
// set_auto_yaw_look_at_heading - sets the yaw look at heading for auto mode
void Copter::set_auto_yaw_look_at_heading(float angle_deg, float turn_rate_dps, int8_t direction, bool relative_angle)
{
// get current yaw target
int32_t curr_yaw_target = attitude_control->get_att_target_euler_cd().z;
// calculate final angle as relative to vehicle heading or absolute
if (!relative_angle) {
// absolute angle
yaw_look_at_heading = wrap_360_cd(angle_deg * 100);
} else {
// relative angle
if (direction < 0) {
angle_deg = -angle_deg;
}
yaw_look_at_heading = wrap_360_cd((angle_deg * 100) + curr_yaw_target);
}
// get turn speed
2015-05-04 23:34:21 -03:00
if (is_zero(turn_rate_dps)) {
// default to regular auto slew rate
yaw_look_at_heading_slew = AUTO_YAW_SLEW_RATE;
} else {
int32_t turn_rate = (wrap_180_cd(yaw_look_at_heading - curr_yaw_target) / 100) / turn_rate_dps;
yaw_look_at_heading_slew = constrain_int32(turn_rate, 1, 360); // deg / sec
}
// set yaw mode
set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING);
// TO-DO: restore support for clockwise and counter clockwise rotation held in cmd.content.yaw.direction. 1 = clockwise, -1 = counterclockwise
}
// set_auto_yaw_roi - sets the yaw to look at roi for auto mode
void Copter::set_auto_yaw_roi(const Location &roi_location)
{
// if location is zero lat, lon and altitude turn off ROI
if (roi_location.alt == 0 && roi_location.lat == 0 && roi_location.lng == 0) {
// set auto yaw mode back to default assuming the active command is a waypoint command. A more sophisticated method is required to ensure we return to the proper yaw control for the active command
set_auto_yaw_mode(get_default_auto_yaw_mode(false));
#if MOUNT == ENABLED
// switch off the camera tracking if enabled
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
camera_mount.set_mode_to_default();
}
#endif // MOUNT == ENABLED
} else {
#if MOUNT == ENABLED
// check if mount type requires us to rotate the quad
if(!camera_mount.has_pan_control()) {
roi_WP = pv_location_to_vector(roi_location);
set_auto_yaw_mode(AUTO_YAW_ROI);
}
// send the command to the camera mount
camera_mount.set_roi_target(roi_location);
// TO-DO: expand handling of the do_nav_roi to support all modes of the MAVLink. Currently we only handle mode 4 (see below)
// 0: do nothing
// 1: point at next waypoint
// 2: point at a waypoint taken from WP# parameter (2nd parameter?)
// 3: point at a location given by alt, lon, lat parameters
// 4: point at a target given a target id (can't be implemented)
#else
// if we have no camera mount aim the quad at the location
roi_WP = pv_location_to_vector(roi_location);
set_auto_yaw_mode(AUTO_YAW_ROI);
#endif // MOUNT == ENABLED
}
}
// set auto yaw rate in centi-degrees per second
void Copter::set_auto_yaw_rate(float turn_rate_cds)
{
set_auto_yaw_mode(AUTO_YAW_RATE);
auto_yaw_rate_cds = turn_rate_cds;
}
// get_auto_heading - returns target heading depending upon auto_yaw_mode
// 100hz update rate
float Copter::get_auto_heading(void)
{
switch(auto_yaw_mode) {
case AUTO_YAW_ROI:
// point towards a location held in roi_WP
return get_roi_yaw();
case AUTO_YAW_LOOK_AT_HEADING:
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
return yaw_look_at_heading;
case AUTO_YAW_LOOK_AHEAD:
// Commanded Yaw to automatically look ahead.
return get_look_ahead_yaw();
case AUTO_YAW_RESETTOARMEDYAW:
// changes yaw to be same as when quad was armed
return initial_armed_bearing;
case AUTO_YAW_LOOK_AT_NEXT_WP:
default:
// point towards next waypoint.
// we don't use wp_bearing because we don't want the copter to turn too much during flight
return wp_nav->get_yaw();
}
}
// returns yaw rate held in auto_yaw_rate and normally set by SET_POSITION_TARGET mavlink messages (positive it clockwise, negative is counter clockwise)
float Copter::get_auto_yaw_rate_cds(void)
{
if (auto_yaw_mode == AUTO_YAW_RATE) {
return auto_yaw_rate_cds;
}
// return zero turn rate (this should never happen)
return 0.0f;
}